2.兩條異面直線互成60°,過空間中任一點A可以作出幾個平面與兩異面直線都成45°角.(  )
A.一個B.兩個C.三個D.四個

分析 把異面直線a,b平移到相交,使交點為A,若∠CAB=60°,則存在2個平面與兩異面直線都成45°角,若∠CAB=120°,則不存在個平面與兩異面直線都成45°角,即可得到答案.

解答 解:把異面直線a,b平移到相交,使交點為A,
此時若∠CAB=60°,則存在2個平面與兩異面直線都成45°角,
若∠CAB=120°,則不存在個平面與兩異面直線都成45°角,
故選:B.

點評 此題是個中檔題.考查異面直線所成的角,以及解決異面直線所成的角的方法(平移法)的應用,體現(xiàn)了轉化的思想和運動變化的思想方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)$f(x)=x-\frac{1}{x}$;
(1)證明f(x)在區(qū)間(0,+∞)為單調遞增函數(shù);
(2)求f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點分別為F1,F(xiàn)2,過F2且傾斜角為60°的直線與雙曲線右支交于A,B兩點,若△ABF1為等腰三角形,則該雙曲線的離心率為$\frac{1+\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.直線y=kx-2交拋物線y2=x于A、B兩點,(1)求k的取值范圍;(2)若AB的中點橫坐標為2,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求曲線x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$在點($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設定義R上在函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<0}\\{a{x}^{3}+(b-4a){x}^{2}-(4b+m)x+n,0≤x≤4}\\{a(lo{g}_{4}x-1),x>4}\end{array}\right.$(a,b,m,n為常數(shù),且a≠0)的圖象不間斷.
(1)求m,n的值;
(2)設a,b互為相反數(shù),且f(x)是R上的單調函數(shù),求a的取值范圍;
(3)若a=1,b∈R,試討論函數(shù)g(x)=f(x)+b的零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$,若函數(shù)y=2[f(x)]2+3mf(x)+1有8個不同的零點,則實數(shù)m的取值范圍是(-1,-$\frac{2\sqrt{2}}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,側棱SA=SB=SC=SD,底面ABCD菱形,AC與BD交于O點.求證:AC⊥平面SBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知log32=a,3b=7,用含有a,b的式子表示log1256.

查看答案和解析>>

同步練習冊答案