已知函數(shù)f(x)=exlnx
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)x>0,求證:f(x+1)>e2x-1
(3)設(shè)n∈N*,求證:ln(1×2+1)+ln(2×3+1)+…+ln[n(n+1)+1]>2n-3.

解:(1)定義域?yàn)椋?,+∞),由f′(x)=exlnx(lnx+1),

故f(x)的增區(qū)間:,減區(qū)間:,
(2)即證:
,由,
令g′(x)=0,得x=2,且g(x)在(0,2)↓,在(2,+∞)↑,所以g(x)min=g(2)=ln3-1,
故當(dāng)x>0時(shí),有g(shù)(x)≥g(2)=ln3-1>0得證,
(3)由(2)得,即,
所以
則:ln(1×2+1)+ln(2×3+1)+…+ln[(n(n+1)]+1=
分析:由題意(1)有函數(shù)解析式可以先求出函數(shù)的定義域,再對(duì)函數(shù)求導(dǎo),令導(dǎo)函數(shù)大于0解出函數(shù)的單調(diào)遞增區(qū)間,令導(dǎo)函數(shù)小于0解出函數(shù)的減區(qū)間;
(2)利用分析法分析出要證明的等價(jià)的不等式令,由,得出函數(shù)等價(jià)求解函數(shù)在定義域上的最小值即可求得;
(3)有(2)得,即,然后把x被k(k+1)代替,即可.
點(diǎn)評(píng):此題考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,還考查了分析法證明不不等式,還考查了不等式證明中的簡(jiǎn)單放縮及求和時(shí)的裂項(xiàng)相消法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn}.求證:數(shù)列{f(xn)}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•西城區(qū)二模)已知函數(shù)f(x)=e|x|+|x|.若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤一模)已知函數(shù)f(x)=e|lnx|-|x-
1
x
|,則函數(shù)y=f(x+1)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e-x(x2+x+1).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案