【題目】已知函數(shù),.
(1)若函數(shù)有且只有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù)的兩個(gè)零點(diǎn)為,,且,求證.
【答案】(1)
(2)見解析
【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)求函數(shù)唯一的極大值,函數(shù)有兩個(gè)零點(diǎn)轉(zhuǎn)化為極大值大于零,且時(shí),時(shí),即可,分類討論即可求出(2)變形方程,可得,是的兩根,構(gòu)造函數(shù),利用導(dǎo)數(shù)求其單調(diào)區(qū)間,可得,即可證明不等式.
(1)解:,∴
當(dāng)時(shí),,∴在上單調(diào)遞增,
當(dāng)時(shí),,∴在上單調(diào)遞減.
∴
∵有且只有兩個(gè)零點(diǎn),
∴,即,
且時(shí),時(shí),,函數(shù)有兩個(gè)零點(diǎn),
若時(shí),不符合題意,
若時(shí),不符合,
若時(shí),滿足,
綜上,若使有且只有兩個(gè)零點(diǎn),∴
(2)證法一:
∵,∴,∴,∴,是的兩根
設(shè),,,,
∴在上單調(diào)遞增,在上單調(diào)遞減,
∵,設(shè),則必有,
構(gòu)造函數(shù),,
∵,
∴在上單調(diào)遞增,∴,
∴,
又∵,在上單調(diào)遞減,
∴,∴,
∴,即;
∴,即.
證法二:不妨設(shè),
∵,∴,即,
設(shè),∴,∴,
∵,∴,
∵,要證,只需證,
即證,即證.
設(shè),(),
∵,∴在單調(diào)遞增.
∵,∴,
∴,∴,即.
證法三:
不妨設(shè),
∵,∴,
要證,只需證,
變形,得:,即.
設(shè)∴,設(shè),(),
∵,∴在上單調(diào)遞增,
∴,∴成立,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。
A. 回答該問卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?
(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)﹣1<a<0時(shí),f(x)存在唯一的零點(diǎn)x0,且x0隨著a的增大而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若且a=2時(shí),求△ABC周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).若在上的最大值為2,則實(shí)數(shù)a所有可能的取值組成的集合是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.
(1)求的分布列及數(shù)學(xué)期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com