6.執(zhí)行如圖所示程序框圖,若輸出的S=-46,則①處填入的條件可以是(  )
A.k<4?B.k<5?C.k>4?D.k>5?

分析 分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加變量k的平方到S并輸出S,模擬程序的執(zhí)行過(guò)程,分析出進(jìn)行循環(huán)的條件,可得答案.

解答 解:程序在運(yùn)行過(guò)程中各變量的值如下表示:
       是否繼續(xù)循環(huán) S k
循環(huán)前/2 1
第一圈         是      1 2
第二圈         是-4 3
第三圈         是-17 4
第四圈         是-46 5
第五圈         否
所以判斷框內(nèi)可填寫“k<5”,
故選B.

點(diǎn)評(píng) 程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF∥CE且AF=2CE,G是線段BF上一點(diǎn),AB=AF=BC=2.
(Ⅰ)當(dāng)GB=GF時(shí),求證:EG∥平面ABC;
(Ⅱ)求二面角E-BF-A的余弦值;
(Ⅲ)是否存在點(diǎn)G,滿足BF⊥平面AEG?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,直線l的方程為x+y-6=0,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ+2\end{array}\right.({θ∈[{0,2π})})$,則圓心C到直線l的距離為$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知四棱錐P-ABCD中,$\overrightarrow{AB}=({4,-2,3})$,$\overrightarrow{AD}=({-4,1,0})$,$\overrightarrow{AP}=({-6,2,-8})$,則點(diǎn)P到底面ABCD的距離為( 。
A.$\frac{{\sqrt{26}}}{13}$B.$\frac{{\sqrt{26}}}{26}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若關(guān)于x的不等式(ax+1)(ex-aex)≥0在(0,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.[0,1]C.$[{0,\frac{e}{2}}]$D.[0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知a,b,c∈(0,+∞),則下列三個(gè)數(shù)$a+\frac{4}$,$b+\frac{9}{c}$,$c+\frac{16}{a}$( 。
A.都大于6B.至少有一個(gè)不大于6
C.都小于6D.至少有一個(gè)不小于6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若復(fù)數(shù)z=a+i的實(shí)部與虛部相等,則實(shí)數(shù)a=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知f(x)=$\frac{{2}^{x}}{2(ln2-1)x}$,則f′(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若x>1,那么1og2x+31ogx4的最小值是2$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案