農(nóng)業(yè)科技員進(jìn)行種植實(shí)驗(yàn),有甲、乙、丙、丁、戊5種作物要種植,如果甲乙兩種必須相鄰種植,而丙丁不能相鄰種植,則不同的種植方法有
 
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題
專題:應(yīng)用題,排列組合
分析:根據(jù)題意,分3步來(lái)分析,先分析甲、乙,用捆綁法視為1個(gè)元素,再將其與戊排在一起,排好后有3個(gè)空位,最后用插空法將丙丁分別放進(jìn)其中2個(gè)空位中,分別分析每一步的情況數(shù)目,由分步計(jì)數(shù)原理計(jì)算可得答案
解答: 解:根據(jù)題意,甲乙必須相鄰,將甲乙視為1個(gè)元素,有2種不同的順序,
將其與戊排在一起,有2種不同的順序,
排好后有3個(gè)空位,將丙丁分別放進(jìn)其中2個(gè)空位中,有A32=6種情況,
則甲乙必須相鄰,丙丁必須不相鄰的排法有2×2×6=24種.
故答案為:24.
點(diǎn)評(píng):本題考查排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,運(yùn)用捆綁法與插空法來(lái)分析相鄰與不相鄰問(wèn)題是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x+acosx-
1
2
a-
3
2
,x∈R
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(Ⅱ)若f(x)的最大值為1,求實(shí)數(shù)a的值;
(Ⅲ)對(duì)于任意x∈[0,
π
3
],不等式f(x)
1
2
-
a
2
都成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[-3,3]上隨機(jī)地取兩個(gè)數(shù)x,y,則x-y>2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}、{bn}是兩個(gè)等差數(shù)列,其中a1=3,b1=-3,且a19-b19=16,那么a10-b10的值為( 。
A、-6B、6C、0D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為T(mén)n,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式;
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)和Sn,并求使Sn>2012的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在四棱錐P-ABCD中,AD⊥DB,其中三棱錐P-BCD的三視圖如圖2所示,且sin∠BDC=
3
5


(I)求證:AD⊥PB;
(Ⅱ)若AD=6,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1+a2+…+an=n2
(1)在數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
an
2n
}的前n項(xiàng)和Sn
(3)求數(shù)列{
4
anan+1an+2
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
ex-1
aex+1
是奇函數(shù).
(1)求a的值;
(2)判斷f(x)的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖所示的程序框圖,當(dāng)輸入n=99時(shí),輸出S的值( 。
A、
99
100
B、
49
50
C、
97
100
D、
24
25

查看答案和解析>>

同步練習(xí)冊(cè)答案