【題目】從某大學(xué)數(shù)學(xué)系圖書室中任選一本書,設(shè){數(shù)學(xué)書},{中文版的書},{2018年后出版的書},問:

1表示什么事件?

2)在什么條件下,有?

3表示什么意思?

4)如果,那么是否意味著圖書室中的所有的數(shù)學(xué)書都不是中文版的?

【答案】(1){2018年或2018年前出版的中文版的數(shù)學(xué)書}(2)“圖書室中所有數(shù)學(xué)書都是2018年后出版的且為中文版”(3)2018年或2018年前出版的書全是中文版的(4)是

【解析】

(1)根據(jù)題意直接判斷即可.

(2)利用事件的交集分析即可.

(3)根據(jù)對立事件與事件的關(guān)系判斷即可.

(4)根據(jù)對立事件判斷即可.

解:(1{2018年或2018年前出版的中文版的數(shù)學(xué)書}.

2)在“圖書室中所有數(shù)學(xué)書都是2018年后出版的且為中文版”的條件下,才有.

3表示2018年或2018年前出版的書全是中文版的.

4)是,意味著圖書室中的非數(shù)學(xué)書都是中文版的,而且所有的中文版的書都不是數(shù)學(xué)書,同時又可化成,因而也可解釋為圖書室中所有數(shù)學(xué)書都不是中文版的,而且所有不是中文版的書都是數(shù)學(xué)書.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時,設(shè)函數(shù),且函數(shù)有且僅有一個零點(diǎn),若當(dāng)時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2) 若由線性回歸方程得到的估計數(shù)據(jù)與4月份所選5天的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請根據(jù)4月74月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著支付寶、微信等支付方式的上線,越來越多的商業(yè)場景可以實現(xiàn)手機(jī)支付.為了解各年齡層的人使用手機(jī)支付的情況,隨機(jī)調(diào)查了50個人,并把調(diào)查結(jié)果制成下表:

(1)把年齡在稱為中青年,年齡在稱為中老年,請根據(jù)上表完成列聯(lián)表,是否有以上的把握判斷使用手機(jī)支付與年齡(中青年、中老年)有關(guān)聯(lián)?

(2)若分別從年齡在、的被調(diào)查者中各隨機(jī)選取2人進(jìn)行調(diào)查,記選中的4人中使用手機(jī)支付的人數(shù)記為,求.

附:可能用到的公式:,其中

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下不等式中錯誤的是( 。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,

()當(dāng)時,求A∩(RB);

()當(dāng)時,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 相交于點(diǎn),點(diǎn)在線段上,,且平面

(1)求實數(shù)的值;

(2)若,, 求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點(diǎn)且關(guān)于軸對稱的兩條直線分別交曲線、、,且點(diǎn)在第一象限,當(dāng)四邊形的周長最大時,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時間(單位:天)記錄如下:

A組:10,11,12,13,14,15,16;

B組:1213,1516,17,14,.

假設(shè)所有病人的康復(fù)時間相互獨(dú)立,從AB兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.

1)求甲的康復(fù)時間不少于14天的概率;

2)如果,求甲的康復(fù)時間比乙的康復(fù)時間長的概率.

查看答案和解析>>

同步練習(xí)冊答案