【題目】已知函數(shù) .
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,設(shè)函數(shù),且函數(shù)有且僅有一個零點,若當(dāng)時, 恒成立,求實數(shù)的取值范圍.
【答案】(1)(2)
【解析】
(1)求出時, 的導(dǎo)數(shù),求得切線的斜率和切點,由點斜式方程可得切線的方程;
(2)令,求得,令,求出導(dǎo)數(shù),令,求出導(dǎo)數(shù),求得單調(diào)性,可得的最大值,當(dāng)時,,求出的單調(diào)性,由條件,即可得到的范圍.
解:(1)當(dāng)時, 的定義域為,
.
,
又,曲線在處的切線方程為.
(2)令,則 ,
即,令,
則 .
令,,
,在上是減函數(shù),
又,所以當(dāng)時, ,當(dāng)時, ,
在上單調(diào)遞增,在上單調(diào)遞減,
.
當(dāng)函數(shù)有且僅有一個零點時, .
當(dāng)時, ,
若,恒成立,只需.
,令得或,
,
數(shù)在上單調(diào)遞增,在上單調(diào)遞
減,在上單調(diào)遞增,又,
,
,
即,,
,即實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計劃舉辦“國學(xué)”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動,在活動前,對所選的10名同學(xué)進行了國學(xué)素養(yǎng)測試,這10名同學(xué)的性別和測試成績(百分制)的莖葉圖如圖所示.
(1)分別計算這10名同學(xué)中,男女生測試的平均成績;
(2)若這10名同學(xué)中,男生和女生的國學(xué)素養(yǎng)測試成績的標(biāo)準(zhǔn)差分別為S1,S2,試比較S1與S2的大。ú槐赜嬎,只需直接寫出結(jié)果);
(3)規(guī)定成績大于等于75分為優(yōu)良,從這10名同學(xué)中隨機選取一男一女兩名同學(xué),求這兩名同學(xué)的國學(xué)素養(yǎng)測試成績均為優(yōu)良的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2ax2+2bx,若存在實數(shù)x0∈(0,t),使得對任意不為零的實數(shù)a,b均有f(x0)=a+b成立,則t的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求曲線與曲線交點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市2016年6月30天的空氣質(zhì)量指數(shù)如下:
35 | 54 | 80 | 86 | 72 | 85 | 58 | 125 | 111 | 53 |
10 | 66 | 46 | 36 | 18 | 25 | 23 | 40 | 60 | 89 |
88 | 54 | 79 | 14 | 16 | 40 | 59 | 67 | 111 | 62 |
你覺得這個月的空氣質(zhì)量如何?請設(shè)計適當(dāng)?shù)念l率分布直方圖展示這組數(shù)據(jù),并結(jié)合空氣質(zhì)量分級標(biāo)準(zhǔn)分析數(shù)據(jù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且,圓的方程是.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;
(3)過圓上任意一點作圓的切線交雙曲線于兩點, 中點為,
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù),).
(1)當(dāng)時,若曲線上存在兩點關(guān)于點成中心對稱,求直線的斜率;
(2)在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為的直線與曲線相交于兩點,若,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對任意實數(shù),恒有,且當(dāng),,又.
(1)判斷的奇偶性;
(2)求在區(qū)間上的最大值;
(3)是否存在實數(shù),使得不等式對一切都成立?若存在求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某大學(xué)數(shù)學(xué)系圖書室中任選一本書,設(shè){數(shù)學(xué)書},{中文版的書},{2018年后出版的書},問:
(1)表示什么事件?
(2)在什么條件下,有?
(3)表示什么意思?
(4)如果,那么是否意味著圖書室中的所有的數(shù)學(xué)書都不是中文版的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com