A. | (0,$\frac{81}{10}$] | B. | (0,$\frac{101}{10}$] | C. | (0,+∞) | D. | (2,$\frac{81}{10}$] |
分析 作出函數(shù)y=|f(x)|的圖象和直線y=a,由圖象可得x1+x2=-2,-lgx3=lgx4,可得x3x4=1,且1<x4≤10,運(yùn)用對(duì)勾函數(shù)的單調(diào)性,即可得到所求范圍.
解答 解:若函數(shù)y=|f(x)|-a有4個(gè)零點(diǎn)x1,x2,x3,x4,
作出函數(shù)y=|f(x)|的圖象和直線y=a,
由圖象可得x1+x2=-2,-lgx3=lgx4,即為lgx3+lgx4=0,
可得x3x4=1,且0<lgx4≤1,即為1<x4≤10,
則x3+x4=$\frac{1}{{x}_{4}}$+x4在(1,10]遞增,
可得x1+x2+x3+x4=-2+$\frac{1}{{x}_{4}}$+x4∈(-2+2,-2+10+$\frac{1}{10}$],
即為(0,$\frac{81}{10}$].
故選:A.
點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)的范圍,考查數(shù)形結(jié)合的思想方法,以及對(duì)勾函數(shù)的單調(diào)性的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1” | |
B. | 若命題p:?x∈R,x2+x+1≠0,則?p:?x∈R,x2+x+1=0 | |
C. | 若p∨q為真命題,則p,q均為真命題 | |
D. | 若命題q:?x∈R,x2+mx+1>0為真命題,則m的取值范圍為-2<m<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}>\frac{1}$ | B. | a+c>b+c | C. | ac2>bc2 | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com