2.函數(shù)f(x)=|x-1|+|x-2|值域是[1,+∞).

分析 根據(jù)絕對值不等式的性質(zhì)便有|x-1|+|x-2|≥1,這樣即可求出f(x)的范圍,即求出函數(shù)f(x)的值域.

解答 解:∵|x-1|+|x-2|≥|(x-1)-(x-2)|≥1;
∴f(x)≥1;
即函數(shù)f(x)的值域是[1,+∞).
故答案為:[1,+∞).

點評 考查函數(shù)值域的概念及求法,以及絕對值不等式的性質(zhì):|a+b|≥|a-b|.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等差數(shù)列{an}的公差為2,若a1+a3+a5=3,則a4+a6+a8=(  )
A.30B.21C.18D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=1+cos2x+$\sqrt{3}$sin2x
(1)若函數(shù)f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間,并在給出的坐標(biāo)系中畫出y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sinx-cosx,則把函數(shù)f(x)的圖象上每個點的橫坐標(biāo)擴大到原來的2倍,再向右平移$\frac{π}{3}$,得到函數(shù)g(x)的圖象,則函數(shù)(x)的一條對稱軸方程為(  )
A.x=$\frac{π}{6}$B.x=$\frac{11π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過三點A(3,2),B(4,5),C(1,6)的圓,則圓的面積為( 。
A.10πB.C.$\frac{5}{2}$πD.$\frac{5}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知P為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一個動點,過P作圓(x-1)2+y2=1的兩條切線,切點分別為A﹑B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍是[$2\sqrt{2}-3,\frac{56}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過兩點M(-1,2),N(3,4)的直線的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法正確的是( 。
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題
C.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
D.“a<1”是“${log_{\frac{1}{2}}}$a>0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項和為Sn,已知3Sn=4an-2,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)Tn是數(shù)列{log2an}的前n項和,求滿足(1-$\frac{1}{{T}_{2}}$)(1-$\frac{1}{{T}_{3}}$)(1-$\frac{1}{{T}_{4}}$)…(1-$\frac{1}{{T}_{n}}$)>$\frac{51}{100}$的最大正整數(shù)n的值.

查看答案和解析>>

同步練習(xí)冊答案