【題目】定義在R上的函數(shù)f(x),f′(x)是其導(dǎo)數(shù),且滿足f(x)+f′(x)>2,ef(1)=2e+4,則不等式exf(x)>4+2ex(其中e為自然對數(shù)的底數(shù))的解集為( )
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)
【答案】A
【解析】解:設(shè)g(x)=exf(x)﹣2ex , (x∈R),
則g′(x)=exf(x)+exf′(x)﹣2ex=ex[f(x)+f′(x)﹣2],
∵f(x)+f′(x)>2,
∴f(x)+f′(x)﹣2>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調(diào)遞增,
∵exf(x)>2ex+4,
∴g(x)>4,
又∵g(1)=ef(1)﹣2e=4,
∴g(x)>g(1),
∴x>1,
故選:A.
【考點精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來.如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外共設(shè)30多個分支機(jī)構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從70后和80后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合計 | 60 | 40 | 100 |
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有90%以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(Ⅱ)該公司舉行參觀駐海外分支機(jī)構(gòu)的交流體驗活動,擬安排4名參與調(diào)查的70后員工參加.70后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,現(xiàn)采用隨機(jī)抽樣方法從報名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式(x+ )( ﹣x)≥0的解集是( )
A.{x|﹣ ≤x≤ }
B.{x|x≤﹣ 或x≥ }??
C.{x|x<﹣ 或x> }
D.{x|﹣ <x< }
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(1,2), =(﹣3,2),當(dāng)k為何值時:
(1)k + 與 ﹣3 垂直;
(2)k + 與 ﹣3 平行,平行時它們是同向還是反向?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二項式的展開式中只有第6項的二項式系數(shù)最大,且展開式中的第3項的系數(shù)是第4項的系數(shù)的3倍,則的值為( )
A. 4 B. 8 C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
某電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:
連續(xù)劇播放時長(分鐘) | 廣告播放時長(分鐘) | 收視人次(萬) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知電視臺每周安排甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用,表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(I)用,列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(II)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使收視人次最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(18)(本小題滿分12分)在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙中心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名B1,B2,
B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示。
(I)求接受甲種心理暗示的志愿者中包含A1但不包含B3的頻率。
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和Sn=2n+r.
(1)求實數(shù)r的值和{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,bn+1﹣bn=log2an+1 , 求bn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足an+log3n=log3bn , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com