10.設(shè)全集U={-2,-1,0,1,2},集合A={0,1,2},則∁UA為( 。
A.B.{-1,1,2}C.{-2,-1}D.{-2,-1,0,1,2}

分析 由全集U,以及A,求出A的補(bǔ)集即可.

解答 解:∵全集U={-2,-1,0,1,2},集合A={0,1,2},
∴∁UA={-2,-1}.
故選:C.

點(diǎn)評(píng) 此題考查了補(bǔ)集及其運(yùn)算,熟練掌握補(bǔ)集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x2-2x-24<0,則y=x2+5x+6的取值范圍是(-$\frac{1}{4}$,72).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正實(shí)數(shù)x,y滿足x+y=2,則x+$\sqrt{{x^2}+{y^2}-2x+1}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=|ax-1|(a∈R),不等式f(x)>5的解集為{x|x<-3或x>2}.
(1)求a的值;
(2)解不等式f(x)-f($\frac{x}{2}$)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若cosα=-$\frac{4}{5}$,且α∈(0,π),則tanα=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥1的解集A滿足[-1,1]⊆A.
(1)求實(shí)數(shù)m的取值范圍B;
(2)若a,b,c∈(0,+∞),m0為B中的最小元素且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=m0,求證:a+2b+3c≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“?x>0,x2-x≤0”的否定是?x>0,x2-x>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)在定義域R內(nèi)可導(dǎo)且關(guān)于x=1對(duì)稱,當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0,設(shè)a=f(0),b=f(-3),c=f(3),則( 。
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已數(shù)列{an}滿足a1=1,a2=3,an+2=(1+2|cos$\frac{nπ}{2}$|)an+|sin$\frac{nπ}{2}$|,n∈N*
(1)證明:數(shù)列:{a2k}{k∈N*}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)bn=$\frac{1}{{a}_{2n}}$+(-1)n-1•($\frac{1}{4}$)${\;}^{{a}_{2n-1}}$,求{bn}的前n項(xiàng)和為Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案