精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= ln(a x)+bx在點(1,f(1))處的切線是y=0;

(I)求函數f(x)的極值;

(II)恒成立時,求實數m的取值范圍(e為自然對數的底數)

【答案】(1) 的極大值為,無極小值

(2) .

【解析】分析:(1)先根據導數幾何意義得解得b,再根據a,根據導函數零點確定單調區(qū)間,根據單調區(qū)間確定極值,(2)先化簡不等式為,再分別求左右兩個函數最值得左邊最小值與右邊最大值同時取到,則不等式轉化為,解得實數m的取值范圍.

詳解:

(1)因為,所以

因為點處的切線是,所以,且

所以,即

所以,所以在上遞增,在上遞減,

所以的極大值為,無極小值

(2)當恒成立時,由(1)

恒成立,

,則,

又因為,所以當時,;當時,.

所以上單調遞減,在上單調遞增,;

上單調遞增,在上單調遞減,.

所以均在處取得最值,所以要使恒成立,

只需,即

解得,又,所以實數的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數a的值;
(2)若y=f(x)在[3,+∞)上為增函數,求實數a的取值范圍;
(3)當a=﹣ 時,方程f(1﹣x)= 有實根,求實數b的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小明的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計總體的方式,試估計小明的所有微信好友中每日走路步數超過5000步的概率;

(2)已知某人一天的走路步數超過8000步時被系統評定為“積極型”,否則為“懈怠型”.根據小明的統計完成下面的列聯表,并據此判斷是否有以上的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD為平行四邊形,AC,BD相交于點O,點E為PC的中點,OP=OC,PA⊥PD.求證:
(1)直線PA∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某公司為鄭州園博園生產某特許商品,該公司年固定成本為10萬元,每生產千件需另投入2 .7萬元,設該公司年內共生產該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數解析式;

〔II〕年產量為多少千件時,該公司在該特許商品的生產中所獲年利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校在本校任選了一個班級,對全班50名學生進行了作業(yè)量的調查,根據調查結果統計后,得到如下的列聯表,已知在這50人中隨機抽取2人,這2人都“認為作業(yè)量大”的概率為.

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

女生

17

合計

50

(Ⅰ)請完成上面的列聯表;

(Ⅱ)根據列聯表的數據,能否有的把握認為“認為作業(yè)量大”與“性別”有關?

(Ⅲ)若視頻率為概率,在全校隨機抽取4人,其中“認為作業(yè)量大”的人數記為,求的分布列及數學期望.

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為ab,c,已知2bcosC=acosC+ccosA.

(1)求角C的大小;

(2)若b=2,c=,求a及△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),,以原點為極點,軸正半軸為極軸建立極坐標系,圓極坐標方程為.

(1)若直線與圓相切,求的值;

(2)已知直線與圓交于,兩點,記點、相應的參數分別為,,當時,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1)當時,求函數的單調區(qū)間.

(2)當時,討論函數圖象的交點個數.

查看答案和解析>>

同步練習冊答案