【題目】已知集合,其中, , . 表示中所有不同值的個數(shù).
()設(shè)集合, ,分別求和.
()若集合,求證: .
()是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
【答案】(1), ;(2)見解析;(3).
【解析】試題分析:(1)直接利用定義把集合P=2,4,6,8,Q=2,4,8,16中的值代入即可求出l(P)和l(Q);
(2)先由ai+aj(1≤i<j≤n)最多有個值,可得,;再利用定義推得所有ai+aj(1≤i<j≤n)的值兩兩不同,即可證明結(jié)論.
(Ⅲ)l(A)存在最小值,設(shè),所以.由此即可證明l(A)的最小值2n-3.
試題解析:
()由, , , , , 得,
由, , , , , 得.
()證明:∵最多有個值,
∴,
又集合,任取, ,
當(dāng)時,不妨設(shè),則,
即,
當(dāng), 時, ,
∴當(dāng)且僅當(dāng), 時, ,
即所有的值兩兩不同,
∴.
()存在最小值,且最小值為,
不妨設(shè),可得,
∴中至少有個不同的數(shù),即,
取,則,即的不同值共有個,
故的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角坐標(biāo)系中,的圓心角為,所在圓的半徑為1,角θ的終邊與交于點(diǎn)C.
(1)當(dāng)C為的中點(diǎn)時,D為線段OA上任一點(diǎn),求的最小值;
(2)當(dāng)C在上運(yùn)動時,D,E分別為線段OA,OB的中點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個交點(diǎn)為, 的周長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,為的中點(diǎn).
()求證:.
()求證:平面平面.
()在平面內(nèi)是否存在,使得直線平面,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下說法:
①一年按365天計算,兩名學(xué)生的生日相同的概率是;②買彩票中獎的概率為0.001,那么買1 000張彩票就一定能中獎;③乒乓球賽前,決定誰先發(fā)球,抽簽方法是從1~10共10個數(shù)字中各抽取1個,再比較大小,這種抽簽方法是公平的;④昨天沒有下雨,則說明“昨天氣象局的天氣預(yù)報降水概率是90%”是錯誤的.
根據(jù)我們所學(xué)的概率知識,其中說法正確的序號是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com