用秦九韶算法計(jì)算當(dāng)x=10時(shí),f(x)=3x4+2x2+x+4的值的過(guò)程中,v1的值為(  )
A、30B、40C、35D、45
考點(diǎn):秦九韶算法
專(zhuān)題:算法和程序框圖
分析:由于f(x)=3x4+2x2+x+4=(((3x+0)x+2)x+1)x+4,即可得出.
解答: 解:∵f(x)=3x4+2x2+x+4=(((3x+0)x+2)x+1)x+4,
∴v0=3,v1=3×10+0=30,
故選:A.
點(diǎn)評(píng):本題考查了秦九韶算法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知PA垂直于正方形ABCD所在的平面,若PA=2,AB=4,求:
(1)三棱錐P-ABD的表面積;
(2)AC與平面PAD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

.已知拋物線y2=4x(x>0),是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)(m,0)且與拋物線有兩個(gè)交點(diǎn)A,B的任一直線都有
FA
FB
<0?若存在求出m的取值范圍,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB=4,BC=2,PA=
6
,∠ACB=90°,則直線AB與平面PBC所成角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在C城周邊已有兩條公路l1,l2在點(diǎn)O處交匯,且它們的夾角為75°.已知OC=(
2
+
6
) km,OC與公路l1的夾角為45°.現(xiàn)規(guī)劃在公路l1,l2上分別選擇A,B兩處為交匯點(diǎn)(異于點(diǎn)O)直接修建一條公路通過(guò)C城.設(shè)OA=x km,OB=y km.
(1)求y關(guān)于x的函數(shù)解析式,并指出它的定義域;
(2)試確定點(diǎn)A,B的位置,使△OAB的面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,a,b,c∈[0,1].求證:
a
1+b+c
+
b
1+a+c
+
c
1+a+b
+(1-a)(1-b)(1-c)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某天,小趙、小張、小李、小劉四人一起到電影院看電影,他們到達(dá)電影院之后發(fā)現(xiàn),當(dāng)天正在放映A,B,C,D,E五部影片于是他們商量一起看其中的一部影片:
小趙說(shuō):只要不是B就行;
小張說(shuō):B,C,D,F(xiàn)都行;
小李說(shuō):我喜歡D,但是只要不是C就行;
小劉說(shuō):除了E之外,其他的都可以
據(jù)此判斷,他們四人可以共同看的影片為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,2),B(2,3),C(-2,5),求證:△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
4
-
y2
5
=1
,則以雙曲線中心為頂點(diǎn),以雙曲線左焦點(diǎn)為焦點(diǎn)的拋物線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案