【題目】給出下列命題,則假命題的個數(shù)是( )
①若,則“”的充要條件是“”;
②給定兩個命題,,是的必要不充分條件,則是的充分不必要條件;
③設(shè),若,則或;
④命題“若,則方程有實數(shù)根”的否命題.( )
A.0B.1C.2D.3
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(江蘇省南京師大附中2018屆高三高考考前模擬考試數(shù)學(xué)試題)已知函數(shù)f(x)=lnx-ax+a,a∈R.
(1)若a=1,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)有兩個零點,求a的范圍;
(3)對于曲線y=f(x)上的兩個不同的點P(x1,f(x1)),Q(x2,f(x2)),記直線PQ的斜率為k,若y=f(x)的導(dǎo)函數(shù)為f ′(x),證明:f ′()<k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受日月引力影響,海水會發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時駛進港口,退潮時離開港口.某港口在某季節(jié)每天港口水位的深度(米)是時間(,單位:小時,表示0:00—零時)的函數(shù),其函數(shù)關(guān)系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時間差為12小時,最高水位的深度為12米,最低水位的深度為6米,每天13:00時港口水位的深度恰為10.5米.
(1)試求函數(shù)的表達式;
(2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時船底與海底的距離不小于3.5米是安全的,問該船在當(dāng)天的什么時間段能夠安全進港?若該船欲于當(dāng)天安全離港,則它最遲應(yīng)在當(dāng)天幾點以前離開港口?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
(1)若,用“五點法”在給定的坐標(biāo)系中,畫出函數(shù)在上的圖象.
(2)若偶函數(shù),求:
(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)不變,再向上平移一個單位得到函數(shù)的圖象,求的對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的班車在8:00準(zhǔn)時發(fā)車,小田與小方均在7:40至8:00之間到達發(fā)車點乘坐班車,且到達發(fā)車點的時刻是隨機的,則小田比小方至少早5分鐘到達發(fā)車點的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線經(jīng)過點.曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過原點O且斜率為的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個關(guān)于圓錐曲線的命題中,其中真命題為( )
A.設(shè)A、B為兩個定點,K為非零常數(shù),若,則動點P的軌跡是雙曲線
B.方程的兩根可分別作為橢圓和雙曲線的離心率
C.雙曲線與橢圓有相同的焦點
D.已知拋物線,以過焦點的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com