7.下列四個(gè)圖象中,只有一個(gè)不是函數(shù)圖象,不是函數(shù)圖象的是圖二

分析 根據(jù)函數(shù)的定義可知:對(duì)于x的任何值y都有唯一的值與之相對(duì)應(yīng),緊扣概念,分析圖象即可得到結(jié)論.

解答 解:根據(jù)函數(shù)的定義可知,只有圖二不能表示函數(shù)關(guān)系.
故答案為:圖二.

點(diǎn)評(píng) 本題主要考查了函數(shù)的圖象,函數(shù)的意義反映在圖象上簡(jiǎn)單的判斷方法是:做垂直x軸的直線在左右平移的過程中與函數(shù)圖象只會(huì)有一個(gè)交點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)點(diǎn)G,M分別是△ABC的重心和外心,A(-1,0),B(1,0),且$\overrightarrow{GM}∥\overrightarrow{AB}$.
(1)求點(diǎn)C的軌跡E的方程;
(2)已知點(diǎn)$D(-\frac{1}{2},0)$,是否存在直線,使過點(diǎn)(0,1)并與曲線E交于P,Q兩點(diǎn),且∠PDQ為鈍角.若存在,求出直線的斜率k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知b<a<0,且a,b,2三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,一條光線從點(diǎn)(a,b)射出,經(jīng)y軸反射與圓(x+4)2+(y-1)2=1相切,則反射光線所在的直線的斜率為( 。
A.-$\frac{5}{3}$或-$\frac{3}{5}$B.-$\frac{3}{2}$或-$\frac{2}{3}$C.-$\frac{5}{4}$或-$\frac{4}{5}$D.-$\frac{4}{3}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},則( 。
A.M∩N={ 4,6 }B.M∪N=UC.(∁UN )∪M=UD.(∁UM)∩N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)$z=\frac{1+ai}{1-i}(a∈R)$,若z為純虛數(shù),則a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知全集U={2,3,4,5,6},∁UA={3,5},則集合A用列舉法表示為{2,4,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在矩形ABCD中,已知AB=2,AD=4,點(diǎn)E、F分別在AD、BC上,且AE=1,BF=3,將四邊形AEFB沿EF折起,使點(diǎn)B在平面CDEF上的射影H在直線DE上.
(1)求證:CD⊥BE;
(2)求線段BH的長(zhǎng)度;
(3)求直線AF與平面EFCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,曲線C1是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的一部分,F(xiàn)1,F(xiàn)2是其兩焦點(diǎn).曲線C2是以原點(diǎn)O為頂點(diǎn)、F2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的一個(gè)公共點(diǎn),并且∠AF2F1為鈍角.我們把由曲線C1和C2合成的曲線C稱為“月食圓”.
①若|AF1|=7,|AF2|=5,則曲線C1、C2的方程分別為
$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{32}$=1(-6≤x≤3)、y2=8x(0≤x≤3)
②過F2作直線l,分別于“月食圓”依次交于B、C、D、E四點(diǎn),若B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),則x1x2x3x4為定值;
③過F2作直線l,分別于“月食圓”依次交于B、C、D、E四點(diǎn),當(dāng)l與x軸垂直時(shí),$\frac{|CD|}{|BE|}$=$\frac{3}{4}$
④連接BF1,EF2,在△BF1F2中,記∠F1BF2=α,∠BF1F2=β,∠F1F2B=γ,則e=$\frac{sinα}{sinβ+sinγ}$.
以上說法正確的有①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G為線段PC上的點(diǎn),
(1)證明:BD⊥平面PAC
(2)若G是PC的中點(diǎn),求DG與平面APC所成的角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案