1.已知集合 A={x|-1<x<1},B={x|0<x<2},集合 C={x|x>a}.
(1)求集合A UCRB;
(2)若A∩C≠φ,求實數(shù)a的取值范圍.

分析 (1)根據(jù)全集R求出B的補集,找出A與B補集的并集即可;
(2)由A,C,以及兩集合交集不為空集,確定出a的范圍即可.

解答 解:(1)A={x|-1<x<1},B={x|0<x<2},
∴CRB={x|x≤0或x≥2},
∴A UCRB={x|x<1或x≥2},
(2)集合 C={x|x>a},A∩C≠∅,
∴a<1
故實數(shù)a的取值范圍(-∞,1).

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},\;\;x≤1\\-{x^2}+2x+1,\;\;x>1\end{array}$的值域是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若直線2x-ay+2=0與直線x+y=0的交點的縱坐標小于0,則( 。
A.a>-2B.a>2C.a<-2D.a<-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù) f(x)=$\sqrt{x-1}$-lg(2-x)的定義域為[1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{3-{x^2}}$的值域[0,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|$\frac{1}{x}$-1|,其中x>0
(1)求f(x)的單調(diào)區(qū)間;
(2)是否存在實數(shù)a,b ( 0<a<b ),使得函數(shù)f(x)的定義域和值域都是[a,b]若存在,請求出a,b的值;若不存在,請說明理由;
(3)若存在實數(shù)a,b ( 0<a<b ),使得函數(shù)f(x)的定義域是[0,b],值域是[ma,mb]( m≠0 ),求實數(shù) m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=x2+ax+b(a,b∈R),若存在非零實數(shù)t,使得f(t)+$f(\frac{1}{t})$=-3,則a2+4b2的最小值是37.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.當a為何值時,函數(shù)y=7x2-(a+13)x+a2-a-2的一個零點在區(qū)間(0,1)上,另一個零點在區(qū)間(1,2)上?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知正項數(shù)列{an}的前n項和為Sn,且$\sqrt{{S}_{n}}$是1與an的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Tn為數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n項和,證明:$\frac{2}{3}$≤Tn<1(n∈N*).

查看答案和解析>>

同步練習冊答案