19.等差數(shù)列{an}的前n項和為Sn,已知S3=a2+10a1,a5=34,則a1=(  )
A.1B.2C.3D.4

分析 利用等差數(shù)列通項公式與求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S3=a2+10a1,a5=34,
∴3a1+3d=11a1+d,a1+4d=34,
則a1=2.
故選:B.

點評 本題考查了等差數(shù)列的通項公式、求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等比數(shù)列{an}中,Sn是其前n項和,若a3=3且2Sn+3Sn+2=5Sn+1,則數(shù)列{an}的通項公式為an=$3×(\frac{2}{3})^{n-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.將一個氣球的半徑擴大1倍,它的體積擴大到原來的(  )倍.
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.電視傳媒公司為了了解某地區(qū)電視觀眾對耨淚體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,下面是根據(jù)調(diào)查得到的2×2列聯(lián)表:
非體育迷體育迷總計
301545
451055
總計7525100
問:在犯錯誤的概率不超過0.10的前提下,是否可以認(rèn)為“體育迷”與性別有關(guān).
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ab-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以下命題中:
①從勻速傳遞的產(chǎn)品流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;
②兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1;
③已知隨機變量ξ+η=8,若ξ~B(10,0.6),則Eη,Dη分別是2和2.4;
④設(shè)隨機變量ξ服從正態(tài)分布N(3,7),若P(ξ>a+2)=P(ξ<a-2),則a=2;
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓的中心在原點,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過點M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點.
(1)求橢圓方程;
(2)若直線l與橢圓有兩個不同的交點,求m的取值范圍;  
(3)若直線l不過點M,求證:直線MA,MB與x軸圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=2x2-ax+5在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍是(  )
A.(-∞,4]B.(-∞,4)C.[4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD底面為一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥面ABCD,E為PC中點
(Ⅰ)求證:平面PDC⊥平面PAD
(Ⅱ)求證:BE∥平面PAD
(Ⅲ) 假定PA=AD=CD,求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示:O、A、B是平面上的三點,設(shè)向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,且|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2在平面AOB上,若P為線段AB的中垂線上任意一點,則$\overrightarrow{OP}$•($\overrightarrow{a}$-$\overrightarrow$)的值是( 。
A.$\frac{5}{2}$B.5C.3D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案