9.如圖所示:O、A、B是平面上的三點(diǎn),設(shè)向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,且|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2在平面AOB上,若P為線段AB的中垂線上任意一點(diǎn),則$\overrightarrow{OP}$•($\overrightarrow{a}$-$\overrightarrow$)的值是(  )
A.$\frac{5}{2}$B.5C.3D.$\frac{3}{2}$

分析 令$\overrightarrow{a}⊥\overrightarrow$,P為AB的中垂線與OA的交點(diǎn),建立坐標(biāo)系求出向量的坐標(biāo)計(jì)算數(shù)量積.

解答 解:不妨設(shè)OA⊥OB,P為AB的中垂線與OA的交點(diǎn),C為AB的中點(diǎn),
以O(shè)為原點(diǎn)建立坐標(biāo)系,則$\overrightarrow{a}-\overrightarrow$=$\overrightarrow{BA}$=(-2,3),
∵AC=$\frac{1}{2}$AB=$\frac{\sqrt{13}}{2}$,$\frac{AC}{AP}=\frac{AO}{AB}$,∴AP=$\frac{13}{6}$,
∴OP=$\frac{5}{6}$,即$\overrightarrow{OP}$=(0,$\frac{5}{6}$),
∴$\overrightarrow{OP}•\overrightarrow{BA}$=$\frac{5}{2}$.
故選A.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,可使用特殊值法計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+10a1,a5=34,則a1=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)M是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一點(diǎn),F(xiàn)1、F2為焦點(diǎn),∠F1MF2=$\frac{π}{6}$,則△MF1F2的面積為16(2-$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.平面直角坐標(biāo)系中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為p2cos2θ+p2sinθ-2psinθ-3=0
(1)求直線l的極坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(1+x2)+ax(a≤0)
(1)若f(x)在x=0處取極值,求a的值;
(2)討論f(x)的單調(diào)性;
(3)證明:$(1+\frac{1}{3})(1+\frac{1}{9})…(1+\frac{1}{3^n})<e\sqrt{e}$(  e為自然對(duì)數(shù)的底數(shù),n∈N*)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.滿足不等式lg(x+1)<lg(3-x)的所有實(shí)數(shù)x的取值范圍是( 。
A.(-∞,1)B.(-1,1)C.(-1,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)袋中有3個(gè)黑球,2個(gè)白球,第一次摸出球,然后再放進(jìn)去,再摸第二次,則兩次摸球都是白球的概率為( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2}{25}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AD⊥CD.
(1)求證:∠CAD=∠BAC;
(2)若AD=4,AC=6,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,面積為S,若S+a2=(b+c)2,則cosA等于-$\frac{15}{17}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案