分析 (1)證明AA1⊥AC.利用平面ABC⊥平面AA1C1C,且AA1垂直于這兩個(gè)平面的交線AC,推出結(jié)果.
(2)以A為原點(diǎn)建立空間直角坐標(biāo)系A(chǔ)-xyz,求出相關(guān)點(diǎn)的坐標(biāo),求出平面A1BC1的法向量,平面BB1C1的法向量,利用向量的數(shù)量積求解二面角A1-BC1-B1的余弦值.
(3)設(shè)D(x,y,z)是直線BC1上一點(diǎn),且$\overrightarrow{BD}$=$λ\overrightarrow{B{C}_{1}}$.求出$\overrightarrow{AD}$=(4λ,3-3λ,4λ).通過(guò)$\overrightarrow{AD}$$•\overrightarrow{{A}_{1}B}=0$,求出$λ=\frac{9}{25}$.推出結(jié)果.
解答 解:(1)因?yàn)锳A1C1C為正方形,所以AA1⊥AC.
因?yàn)槠矫鍭BC⊥平面AA1C1C,且AA1垂直于這兩個(gè)平面的交線AC,
所以AA1⊥平面ABC.….(4分)
(2)由(I)知AA1⊥AC,AA1⊥AB.由題知AB=3,BC=5,AC=4,
所以AB⊥AC.
如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系A(chǔ)-xyz,則B(0,3,0),
A1(0,0,4),B1(0,3,4),C1(4,0,4),$\overrightarrow{{A}_{1}B}$=(0,3,-4),
$\overrightarrow{{A}_{1}{C}_{1}}$=(4,0,0)
設(shè)平面A1BC1的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}B}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}{C}_{1}}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{3y-4z=0}\\{4x=0}\end{array}\right.$,
令z=3,則x=0,y=4,所以$\overrightarrow{n}$=(0,4,3).
同理可得,平面BB1C1的法向量為$\overrightarrow{m}$=(3,4,0),所以cos$<\overrightarrow{n},\overrightarrow{m}>$=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}||\overrightarrow{m}|}$=$\frac{16}{25}$.
由題知二面角A1-BC1-B1為銳角,所以二面角A1-BC1-B1的余弦值為$\frac{16}{25}$.…(8分)
(3)設(shè)D(x,y,z)是直線BC1上一點(diǎn),且$\overrightarrow{BD}$=$λ\overrightarrow{B{C}_{1}}$.
所以(x,y-3,z)=λ(4,-3,4).解得x=4λ,y=3-3λ,z=4λ.
所以$\overrightarrow{AD}$=(4λ,3-3λ,4λ).
由$\overrightarrow{AD}$$•\overrightarrow{{A}_{1}B}=0$,即9-25λ=0.解得$λ=\frac{9}{25}$.
因?yàn)?\frac{9}{25}$∈(0,1),所以在線段BC1上存在點(diǎn)D,使得AD⊥A1B.
此時(shí),$\frac{BD}{B{C}_{1}}$=λ=$\frac{9}{25}$.…(12分)
點(diǎn)評(píng) 本題考查二面角的平面角的求法,平面與平面垂直的性質(zhì)定理的應(yīng)用,考查空間想象能力以及邏輯推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A=B=C | B. | A⊆C | C. | A∩C=B | D. | B⊆A∩C |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | $2\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com