10.直線kx+y+1=2k,當(dāng)k變動時,所有直線都通過定點( 。
A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)

分析 將直線化簡成點斜式的形式得:y+1=-k(x-2),可得直線的斜率為-k且經(jīng)過定點(2,-1),從而得到答案.

解答 解:將直線kx+y+1=2k化簡為點斜式,可得y+1=-k(x-2),
∴直線經(jīng)過定點(2,-1),且斜率為-k.
即直線kx+y+1=2k恒過定點(2,-1).
故選:A.

點評 本題給出含有參數(shù)k的直線方程,求直線經(jīng)過的定點坐標(biāo).著重考查了直線的基本量與基本形式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足(1+2i3)z=1+2i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline{z}$等于( 。
A.$\frac{3}{5}$+$\frac{4}{5}i$B.-$\frac{3}{5}$+$\frac{4}{5}i$C.$\frac{3}{5}$-$\frac{4}{5}i$D.-$\frac{3}{5}-\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{-cosx}$+$\sqrt{cotx}$的定義域是(π+2kπ,$\frac{3π}{2}$+2kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某校為了了解本校高三學(xué)生學(xué)習(xí)心理狀態(tài),采用系統(tǒng)抽樣方法從800人中抽取40人參加某種測試,為此將學(xué)生隨機(jī)編號為1,2,…,800,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到號碼為18,抽到的40人中,編號落入?yún)^(qū)間[1,200]的人做試卷A,編號落入?yún)^(qū)間[201,560]的人做試卷B,其余的人做試卷C,則做試卷C的人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.將一副三角板拼成直二面角A-BC-D,其中∠BAC=90°,AB=AC,∠BCD=90°,∠CBD=30°.
(1)求證:平面BAD⊥平面CAD;
(2)求BD與平面CAD所成的角的正切值;
(3)若CD=2,求C到平面BAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直線l為2ρsin(θ+$\frac{π}{3}$)=$\sqrt{3}$.
(1)判斷曲線C與直線l的位置關(guān)系,寫出直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C的兩個交點為A、B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某工廠對某種產(chǎn)品的產(chǎn)量與成本的資料分析后有如表數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
經(jīng)過分析,知道產(chǎn)量x和成本y之間具有線性相關(guān)關(guān)系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y$=$\hat b$x+$\hat a$;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測產(chǎn)量為10千件時的成本.
參考公式:回歸直線的斜率和截距的最小二乘估計公式分別為$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.方程2x•x2=1的實數(shù)解的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+x2+bx(a為實常數(shù)).
(I)若a=-2,b=-3,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若b=0,且a>-2e2,求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案