已知非零向量
OA
,
OB
不共線,且
BM
=
1
3
BA
,則向量
OM
=( 。
A、
1
3
AO
-
2
3
OB
B、
2
3
AO
+
1
3
OB
C、
1
3
AO
+
2
3
OB
D、
1
3
AO
-
4
3
OB
考點:向量加減法的應(yīng)用,向量的共線定理
專題:平面向量及應(yīng)用
分析:利用向量的三角形法則即可得出.
解答: 解:∵
BM
=
1
3
BA
,
OM
=
OB
+
1
3
(
OA
-
OB
)
=
1
3
OA
+
2
3
OB

故選:C.
點評:本題考查了向量的三角形法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1是一個幾何體的主視圖和左視圖(上面是邊長為4的正三角形,下面是矩形),圖2是內(nèi)切于邊長為4的正方形),則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)平面上點集S={z||z|2-2iz+2a(1+i)=0},a≥0.
(1)當(dāng)S≠∅時,求a的范圍;
(2)當(dāng)S≠∅時,求|z-2|的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
2
(x2-4x+3)的值域是
 
;單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ax+φ)(A>0,ω>0,|φ|<
π
2
),圖象的一個最高點為(
π
3
,2),圖象兩條相鄰的對稱軸之間的距離為
π
2

(1)求函數(shù)的解析式;
(2)設(shè)α∈[0,π],f(
α
2
)=1,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,?x∈R,不等式sinx+cosx>m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),對于m,n∈R恒有f(m+n)=f(m)gf(n),且當(dāng)x>0時,0<f(x)<1,f(1)=
1
2

(1)證明:f(0)=1;
(2)證明:x∈R時,恒有f(x)>0(3)判斷函數(shù)f(x)的單調(diào)性,并證明;
(4)解不等式:f(x)
1
64f(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x
+xln x,則曲線y=f(x)在x=1處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時,f(x)=2015x+log2015x,則方程f(x)=0的實根的個數(shù)為( 。
A、1B、2C、3D、5

查看答案和解析>>

同步練習(xí)冊答案