16.已知A,B,C是圓O上的三點(diǎn)(點(diǎn)O為圓的圓心),若$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為90°.

分析 根據(jù)題意,設(shè)B、C的中點(diǎn)為E,由向量加法的運(yùn)算公式有$\overrightarrow{AE}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,結(jié)合題意分析可得O是線段BC的中點(diǎn),即BC是圓的直徑,由于直徑所對(duì)的圓周角為90°,分析即可得答案.

解答 解:根據(jù)題意,設(shè)B、C的中點(diǎn)為E,則有$\overrightarrow{AE}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,
又由$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,則有$\overrightarrow{AE}$=$\overrightarrow{AO}$,
則O是線段BC的中點(diǎn),即BC是圓的直徑,
進(jìn)而有∠A=90°,
則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角即∠A為90°;
故答案為:90°.

點(diǎn)評(píng) 本題考查向量加法的性質(zhì),關(guān)鍵是分析得到O是BC的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(x)=sinx-$\sqrt{3}$cosx的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an}中,a6+a10=16,a4=2,則a6的值是( 。
A.15B.10C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=ex,則f′(2)=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.根據(jù)兩角的和差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ①
sin(α-β)=sinαcosβ-cosαsinβ②
由①+②得,sin(α+β)+sin(α-β)=2sinαcosβ③
令α+β=A,α-β=B,則$α=\frac{A+B}{2},β=\frac{A-B}{2}$,代入③得:$sinA+sinB=2sin\frac{A+B}{2}cos\frac{A-B}{2}$.
(I)類比上述推理方法,根據(jù)兩角的和差的余弦公式,求證:$cosA-cosB=-2sin\frac{A+B}{2}sin\frac{A-B}{2}$;
(II)若△ABC的三個(gè)內(nèi)角A、B、C滿足cos2A-cos2B=1-cos2C,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在空間直角坐標(biāo)系Oxyz中,點(diǎn)A(1,1,1),B(1,1,0),C(0,0,1),則△ABC為( 。
A.直角三角形B.等腰直角三角形C.正三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=sinx+cos(x+$\frac{π}{6}$),x∈R
(Ⅰ)求函數(shù)f(x)的最小正周期及其在區(qū)間[0,$\frac{π}{2}$]上的值域;
(Ⅱ)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=$\frac{\sqrt{3}}{2}$,且a=$\frac{\sqrt{3}}{2}b$,求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)f(x)=2sin(x$+\frac{π}{4}$)的圖象上各點(diǎn)的橫坐標(biāo)縮小為原來的$\frac{1}{2}$(縱坐標(biāo)不變),再向右平移φ(φ>0)個(gè)單位后得到的圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱,則φ的最小值是( 。
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{3}{4}π$D.$\frac{3}{8}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.α,β為兩個(gè)不同的平面,m,n為兩條不同的直線,下列命題中正確的是(  )
①若α∥β,m?α,則m∥β;
②若m∥α,n?α,則m∥n;
③若α⊥β,α∩β=n,m⊥n,則m⊥β;
④若n⊥α,n⊥β,m⊥α,則m⊥β.
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案