A. | $[-\frac{3π}{4},\frac{π}{4}]$ | B. | $[-\frac{π}{4},\frac{3π}{4}]$ | C. | $[-\frac{3π}{8},\frac{π}{8}]$ | D. | $[-\frac{π}{8},\frac{3π}{8}]$ |
分析 由三角函數(shù)公式化簡可得f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),解2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得函數(shù)f(x)的單調遞增區(qū)間,結合選項給k取值可得.
解答 解:由三角函數(shù)公式化簡可得f(x)=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可解得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z,
∴函數(shù)f(x)=sin2x-cos2x的單調遞增區(qū)間為[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z,
結合選項取k=可得函數(shù)的一個單調遞增區(qū)間為:[-$\frac{π}{8}$,$\frac{3π}{8}$],
故選:D
點評 本題考查兩角和與差的三角函數(shù),涉及三角函數(shù)的單調性,屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com