9.某產(chǎn)品的廣告費用x與銷售額y的不完整統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)345
銷售額y(萬元)2228m
若已知回歸直線方程為$\widehat{y}$=9x-6,則表中m的值為( 。
A.40B.39C.38D.37

分析 求出數(shù)據(jù)中心($\overline{x}$,$\overline{y}$),代入回歸方程解出m.

解答 解:由題意,回歸方程過樣本平均數(shù)點($\overline{x}$,$\overline{y}$),可求出$\overline{x}$=4
代入得;$\overline{y}$=36-6=30,
則30=$\frac{22+28+m}{3}$,∴m=40.
故選:A.

點評 本題考查了線性回歸方程的特點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,以此類推,則當(dāng)n=11時,an+bn=199.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.回文數(shù)是從左到右與從右到左讀都一樣的正整數(shù),如2,11,242,6776,83238等,設(shè)n位回文數(shù)的個數(shù)為an(n為正整數(shù)),如11是2位回文數(shù),下列說法正確的是( 。
A.a4=100B.a2n+1=10a2n(n∈N+
C.a2n=10a2n-1(n∈N+D.以上說法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)求以A(-1,2),B(5,-6)為直徑兩端點的圓的方程
(2)點P(a,b)在直線x+y+1=0上,求$\sqrt{{a^2}+{b^2}-2a-2b+2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m=log0.58,n=3.2-3,p=3.20.3,則實數(shù)m,n,p的大小關(guān)系為(  )
A.m<p<nB.m<n<pC.n<m<pD.n<p<m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A={x|x≥k},B={{x|$\frac{3}{x+1}$<1},若A⊆B,則k的范圍是(  )
A.k<-1B.k≤-1C.k>2D.k≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若焦距為2的雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1\;(a>0,b>0)$上存在到y(tǒng)軸、x軸的距離之比為2的點P,則雙曲線實軸長的取值范圍為$0<2a<\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.記公差d≠0的等差數(shù)列{an}的前n項和為Sn,已知a1=2+$\sqrt{2}$,S3=12+3$\sqrt{2}$.
(1)求數(shù)列{an}的通項公式an及前n項和Sn
(2)已知等比數(shù)列{bnk},bn+$\sqrt{2}$=an,n1=1,n2=3,求nk
(3)問數(shù)列{an}中是否存在互不相同的三項構(gòu)成等比數(shù)列,說明理由.

查看答案和解析>>

同步練習(xí)冊答案