18.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,有下列四個(gè)命題:①d<0;②S11>0;③S12<0;④S8>S5,其中正確命題序號(hào)是(  )
A.②③B.①④C.①③D.①②

分析 根據(jù)已知中Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,可得a7<0,a6+a7>0,進(jìn)而a6>0,|a6|>|a7|,逐一分析四個(gè)結(jié)論的真假,可得答案.

解答 解:∵Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,
∴a7<0,a6+a7>0,
∴a6>0,|a6|>|a7|,
∴①d<0;
②S11=11a6>0;
③S12=6(a6+a7)>0;
④S8=S5+(a6+a7+a8)=S5+3a7<S5,
故正確的命題的序號(hào)是:①②,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,等差數(shù)列的性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(diǎn)O在二面角α-AB-β的棱上,點(diǎn)P在α內(nèi),且∠POB=60°.若對(duì)于β內(nèi)異于O的任意一點(diǎn)Q,都有∠POQ≥60°,則二面角α-AB-β的大小是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.關(guān)于x的不等式$\frac{{(m-2){x^2}+2(m-2)x-4}}{{{x^2}-x+2}}<0$對(duì)一切x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.計(jì)算:${∫}_{-2}^{2}({x}^{3}+\sqrt{4-{x}^{2}})dx$=2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.有下列命題:
①當(dāng)λ∈R,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$時(shí),λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$;
②當(dāng)λ1,λ2,…,λn∈R,且λ12+…+λn=0時(shí),λ1$\overrightarrow{a}$+λ2$\overrightarrow{a}$+…+λn$\overrightarrow{a}$=$\overrightarrow{0}$;
③當(dāng)λ1,λ2,…λn∈R,且λ12+…+λn=0時(shí),$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,…,$\overrightarrow{{a}_{n}}$是n個(gè)向量,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$,則λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$.
其中真命題有①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對(duì)任意實(shí)數(shù)x,若不等式x+|3x-2a|≥3恒成立,則實(shí)數(shù)a的取值范圍是[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=$\frac{a•2^x+a-2}{2^x+1}$是定義在[-2,2]上的奇函數(shù).
(1)求實(shí)數(shù)a的值,并求f(1)的值;
(2)證明:f(x)在定義域上為增函數(shù);
(3)解不等式f(2x-1)<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若線性方程組的增廣矩陣為$(\begin{array}{l}{2}&{3}&{{c}_{1}}\\{3}&{2}&{{c}_{2}}\end{array})$,解為$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$,則c1-c2=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=ex-ax在(1,+∞)上單調(diào)增,則實(shí)數(shù)a的最大值為e.

查看答案和解析>>

同步練習(xí)冊(cè)答案