分析 由橢圓的性質(zhì)可知:焦點在x軸上,b=2,根據(jù)橢圓的離心率公式求得a的值,求得橢圓的方程.
解答 解:由題意可知:橢圓的焦點在x軸,且b=2,
由離心率公式e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,解得:a=16,
故橢圓的標準方程:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1.
點評 本題考查橢圓的標準方程及簡單性質(zhì),考查橢圓的離心率公式,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0•$\overrightarrow a$=0 | B. | 若$\overrightarrow a$⊥$\overrightarrow b$,則|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$| | ||
C. | 若$\overrightarrow a$•$\overrightarrow b$=0,則$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow 0$ | D. | 若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則$\overrightarrow b$=$\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com