18.曲線y=xe2x-1在點(diǎn)(1,e)處的切線方程為3ex-y-2e=0.

分析 根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=1處的導(dǎo)數(shù),從而得到切線的斜率,再利用點(diǎn)斜式方程寫出切線方程即可.

解答 解:y'=e2x-1(1+2x)
y'|x=1=3e
而切點(diǎn)的坐標(biāo)為(1,e)
∴曲線y=xe2x-1在(1,e)處的切線方程為3ex-y-2e=0
故答案為:3ex-y-2e=0

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查運(yùn)算求解能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.當(dāng)k為何值時(shí),方程組$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=6}\\{x-y=k}\end{array}\right.$,有唯一解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)=$\sqrt{(x-1)\sqrt{{x^2}-x-2}}$的定義域?yàn)閧-1}∪{x|x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖的程序框圖,若任意輸入?yún)^(qū)間[1,18]中的整數(shù)x,則輸出的x大于39的概率是$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為(0,2),且離心率為$\frac{\sqrt{3}}{2}$.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:
①函數(shù)f(x)=$\frac{3x-1}{x}$不可能是k型函數(shù);
②若函數(shù)y=-$\frac{1}{2}$x2+x是3型函數(shù),則m=-4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為$\frac{4}{9}$;
④若函數(shù)y=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)是1型函數(shù),則n-m的最大值為$\frac{2\sqrt{3}}{3}$.
下列選項(xiàng)正確的是( 。
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)常數(shù)a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-2},若A∪B=R,則a的取值范圍為(  )
A.(-∞,3)B.(-∞,3]C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=cos$\frac{x}{2}$-tanx在[0,2017π]上的零點(diǎn)的個(gè)數(shù)為( 。
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在等差數(shù)列{an}中,a1+a2=7,a3=8.令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案