【題目】已知函數(shù)(其中e為自然對數(shù)的底).
(1)若在上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若,證明:存在唯一的極小值點,且.
【答案】(1);(2)證明見解析
【解析】
(1)求導得,則在時恒成立,不等式可轉(zhuǎn)化為,求出的最小值,令即可;
(2)時,,求出導函數(shù),可知單調(diào)遞增,令,易證,從而可證明存在唯一的極小值點,再結(jié)合,可得到和,從而可得到的表達式,結(jié)合,求出的取值范圍即可.
(1)由題意,,則在時恒成立,即在時恒成立,
令,則,顯然在上單調(diào)遞增,則,所以只需,即滿足在時恒成立,
故實數(shù)a的取值范圍是.
(2),則,其定義域為,
求導得,顯然是上的增函數(shù),
,因為,所以,即,
,因為,所以,即,
令,則在上有唯一零點,且,
故時,單調(diào)遞減,時,單調(diào)遞增,所以存在唯一的極小值點.
因為,所以,兩邊取對數(shù)得,即,
故,,
構(gòu)造函數(shù),,
顯然在上單調(diào)遞減,所以,
又,,故,即.
所以存在唯一的極小值點,且.
科目:高中數(shù)學 來源: 題型:
【題目】某校高三4班有50名學生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學生進行編號(1-50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
甲抽取的樣本數(shù)據(jù)
編號 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投籃成 績 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的樣本數(shù)據(jù)
編號 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投籃成 績 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學生人數(shù)為,求的分布列和數(shù)學期望.
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男 | |||
女 | |||
合計 | 10 |
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)設(shè)函數(shù)(其中為的導函數(shù)),判斷在上的單調(diào)性;
(2)若函數(shù)在定義域內(nèi)無零點,試確定正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是橢圓C上異于A,B的點,直線交直線于點,當點運動時,判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線上任意一點到直線:的距離是它到點距離的2倍;曲線是以原點為頂點,為焦點的拋物線.
(1)求,的方程;
(2)設(shè)過點的動直線與曲線相交于,兩點,分別以,為切點引曲線的兩條切線,,設(shè),相交于點.連接的直線交曲線于,兩點.
(i)求證:;
(ii)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用細鋼管焊接而成的花壇圍欄構(gòu)件如圖所示,它的外框是一個等腰梯形PQRS,內(nèi)部是一段拋物線和一根橫梁,拋物線的頂點與梯形上底中點是焊接點O,梯形的腰緊靠在拋物線上,兩條腰的中點是梯形的腰、拋物線以及橫梁的焊接點A,B,拋物線與梯形下底的兩個焊接點為C,D,已知梯形的高是40厘米,C,D兩點間的距離為40厘米.
(1)求橫梁AB的長度;
(2)求梯形外框的用料長度;
(注:細鋼管的粗細等因素忽略不計,結(jié)果精確到1厘米)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的直角坐標方程,并求時直線的普通方程;
(2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在△中, , 分別為, 的中點, 為的中點, , .將△沿折起到△的位置,使得平面平面, 為的中點,如圖2.
(1)求證: 平面;
(2)求證:平面平面;
(3)線段上是否存在點,使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若存在兩個不相等的正數(shù),,滿足,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com