【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P是橢圓C上異于A,B的點,直線交直線于點,當點運動時,判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.
【答案】(Ⅰ);(Ⅱ)以BD為直徑的圓與直線PF相切.
【解析】
(Ⅰ)根據(jù)條件解得a,b值,(Ⅱ)設點P(x0,y0),解得D點坐標,即得以BD為直徑的圓圓心坐標以及半徑,再根據(jù)直線PF方程,利用圓心到直線PF距離與半徑大小關(guān)系作判斷.
(Ⅰ)依題可知B(a,0),a=2,因為,所以c=1,
故橢圓C的方程為.
(Ⅱ)以BD為直徑的圓與直線PF相切.
證明如下:設點P(x0,y0),則
①當x0=1時,點P的坐標為(1,±),直線PF的方程為x=1,
D的坐標為(2,±2).
此時以BD為直徑的圓與直線PF相切.
②當≠1時直線AP的方程為,
點D的坐標為,BD中點E的坐標為,故
直線PF的斜率為,
故直線PF的方程為,即,
所以點E到直線PF的距離,故以BD為直徑的圓與直線PF相切.
綜上得,當點P運動時,以BD為直徑的圓與直線PF相切.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為.數(shù)列滿足,.
(1)若,且,求正整數(shù)的值;
(2)若數(shù)列,均是等差數(shù)列,求的取值范圍;
(3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,,成等差數(shù)列,若存在,求出一個的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓,直線,直線與橢圓交于不同的兩點,點和點關(guān)于軸對稱,直線與軸交于點.
(1)若點是橢圓的一個焦點,求該橢圓的長軸的長度;
(2)若,且,求的值;
(3)若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某乳業(yè)公司生產(chǎn)甲、乙兩種產(chǎn)品,需要A,B,C三種苜蓿草飼料,生產(chǎn)1個單位甲種產(chǎn)品和生產(chǎn)1個單位乙種產(chǎn)品所需三種苜蓿草飼料的噸數(shù)如下表所示:
產(chǎn)品 苜蓿草飼料 | A | B | C |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
現(xiàn)有A種飼料200噸,B種飼料360噸,C種飼料300噸,在此基礎上生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)1個單位甲產(chǎn)品,產(chǎn)生的利潤為2萬元;生產(chǎn)1個單位乙產(chǎn)品,產(chǎn)生的利潤為3萬元,分別用x,y表示生產(chǎn)甲、乙兩種產(chǎn)品的數(shù)量.
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應的平面區(qū)域;
(2)問分別生產(chǎn)甲乙兩種產(chǎn)品多少時,能夠產(chǎn)出最大的利潤?并求出此最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)
討論的單調(diào)性;
若是的極值點,且曲線在兩點 處的切線相互平行,這兩條切線在軸上的截距分別為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點P,則當實數(shù)k變化時,點P到直線4x-3y+10=0的距離的最大值為( )
A.2B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com