【題目】如圖,在四棱錐中,底面,,,.

1)求證:;

2)若,求平面和平面所成的角(銳角)的余弦值.

【答案】1)證明見解析;(2

【解析】

1)取的中點(diǎn),連接,根據(jù)線面垂直的判定定理,證明平面,進(jìn)而可得線線垂直;

2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),根據(jù)題中條件,分別求出兩平面的法向量,求出兩向量夾角的余弦值,即可得出結(jié)果.

1)證明:取的中點(diǎn),連接,

因?yàn)?/span>,所以

又因?yàn)?/span>,所以四邊形是平行四邊形.

因?yàn)?/span>所以四邊形是矩形.

所以.

所以.

所以是直角三角形,即.

底面,底面

所以.

平面,平面,且.

所以平面.

平面

所以.

2)如圖,以為坐標(biāo)原點(diǎn),分別以,所在直線為軸,軸,軸建立空間直角坐標(biāo)系

設(shè),則,

由(1)知,.

所以.

所以

所以.

設(shè)平面的法向量為,則

所以,即,

,則,

所以平面的一個法向量為.

又平面的一個法向量為

所以

所以平面和平面所成的角(銳角)的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓的左頂點(diǎn)為A,且橢圓E經(jīng)過與坐標(biāo)軸不垂直的直線l與橢圓E交于CD兩點(diǎn),且直線AC和直線AD的斜率之積為.

I)求橢圓E的標(biāo)準(zhǔn)方程;

)求證:直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在正常數(shù),使得對任意的,都有成立,我們稱函數(shù)同比不減函數(shù)

1)求證:對任意正常數(shù)都不是同比不減函數(shù);

2)若函數(shù)同比不減函數(shù),求的取值范圍;

3)是否存在正常數(shù),使得函數(shù)同比不減函數(shù),若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進(jìn)行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著金融市場的發(fā)展,越來越多人選擇投資“黃金”作為理財?shù)氖侄危旅鎸?/span>A市把黃金作為理財產(chǎn)品的投資人的年齡情況統(tǒng)計如下圖所示.

1)求圖中a的值;

2)求把黃金作為理財產(chǎn)品的投資者的年齡的中位數(shù)以及平均數(shù);(結(jié)果用小數(shù)表示,小數(shù)點(diǎn)后保留兩位有效數(shù)字)

3)以頻率估計概率,現(xiàn)從所有投資者中隨機(jī)抽取4人,記年齡在的人數(shù)為X,求X的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊平行四邊形綠地,經(jīng)測量百米,百米,,擬過線段上一點(diǎn)設(shè)計一條直路(點(diǎn)在四邊形的邊上,不計路的寬度),將綠地分成兩部分,且右邊面積是左邊面積的3倍,設(shè)百米,百米.

(1)當(dāng)點(diǎn)與點(diǎn)重合時,試確定點(diǎn)的位置;

(2)試求的值,使路的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上兩個不同的點(diǎn)、關(guān)于直線對稱.

1)若已知為橢圓上動點(diǎn),證明:

2)求實(shí)數(shù)的取值范圍;

3)求面積的最大值(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市為改善空氣環(huán)境質(zhì)量,控制大氣污染,政府相應(yīng)出臺了多項(xiàng)改善環(huán)境的措施.其中一項(xiàng)是為了減少燃油汽車對大氣環(huán)境污染.從2018年起大力推廣使用新能源汽車,鼓勵市民如果需要購車,可優(yōu)先考慮選用新能源汽車.政府對購買使用新能源汽車進(jìn)行購物補(bǔ)貼,同時為了地方經(jīng)濟(jì)發(fā)展,對購買本市企業(yè)生產(chǎn)的新能源汽車比購買外地企業(yè)生產(chǎn)的新能源汽車補(bǔ)貼高.所以市民對購買使用本市企業(yè)生產(chǎn)的新能源汽車的滿意度也相應(yīng)有所提高.有關(guān)部門隨機(jī)抽取本市本年度內(nèi)購買新能源汽車的戶,其中有戶購買使用本市企業(yè)生產(chǎn)的新能源汽車,對購買使用新能源汽車的滿意度進(jìn)行調(diào)研,滿意度以打分的形式進(jìn)行.滿分分,將分?jǐn)?shù)按照分成5組,得如下頻率分布直方圖.

(1)若本次隨機(jī)抽取的樣本數(shù)據(jù)中購買使用本市企業(yè)生產(chǎn)的新能源汽車的用戶中有戶滿意度得分不少于分,把得分不少于分為滿意.根據(jù)提供的條件數(shù)據(jù),完成下面的列聯(lián)表.

滿意

不滿意

總計

購本市企業(yè)生產(chǎn)的新能源汽車戶數(shù)

購?fù)獾仄髽I(yè)生產(chǎn)的新能源汽車戶數(shù)

總計

并判斷是否有的把握認(rèn)為購買使用新能源汽車的滿意度與產(chǎn)地有關(guān)?

(2)以頻率作為概率,政府對購買使用新能源汽車的補(bǔ)貼標(biāo)準(zhǔn)是:購買本市企業(yè)生產(chǎn)的每臺補(bǔ)貼萬元,購買外地企業(yè)生產(chǎn)的每臺補(bǔ)貼萬元.但本市本年度所有購買新能源汽車的補(bǔ)貼每臺的期望值不超過萬元.則購買外地產(chǎn)的新能源汽車每臺最多補(bǔ)貼多少萬元?

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),給出以下四個命題:(1)當(dāng)時,單調(diào)遞減且沒有最值;(2)方程一定有實(shí)數(shù)解;(3)如果方程為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4是偶函數(shù)且有最小值.其中假命題的序號是____________.

查看答案和解析>>

同步練習(xí)冊答案