【題目】如圖,直線l:y=x+b (b>0),拋物線C:y2=2px(p>0),已知點(diǎn)P(2,2)在拋物線C上,且拋物線C上的點(diǎn)到直線l的距離的最小值為.
(1)求直線l及拋物線C的方程;
(2)過(guò)點(diǎn)Q(2,1)的任一直線(不經(jīng)過(guò)點(diǎn)P)與拋物線C交于A,B兩點(diǎn),直線AB與直線l相交于點(diǎn)M,記直線PA,PB,PM的斜率分別為k1,k2,k3.問(wèn):是否存在實(shí)數(shù)λ,使得k1+k2=λk3?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)直線l的方程為y=x+2,拋物線C的方程為y2=2x.;(2)存在,且2.
【解析】試題分析:(1)設(shè)出直線方程,聯(lián)立直線和拋物線的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和點(diǎn)到直線的距離公式進(jìn)行求解;(2)設(shè)出直線方程,聯(lián)立直線和拋物線的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系得到等量關(guān)系,再聯(lián)立兩直線方程得到另一等量關(guān)系,兩者結(jié)合即可證明.
試題解析:(1)∵點(diǎn)P(2,2)在拋物線C上,∴p=1.
設(shè)與直線l平行且與拋物線C相切的直線l′的方程為y=x+m,
由
得x2+(2m-2)x+m2=0,Δ=(2m-2)2-4m2=4-8m,
由Δ=0,得m=,
則直線l′的方程為y=x+.
兩直線l,l′間的距離即為拋物線C上的點(diǎn)到直線l的最短距離,
有=,
解得b=2或b=-1(舍去).
∴直線l的方程為y=x+2,拋物線C的方程為y2=2x.
(2)∵直線AB的斜率存在,且k≠0,
∴設(shè)直線AB的方程為y-1=k(x-2)(k≠0),
即y=kx-2k+1.
聯(lián)立
得ky2-2y-4k+2=0(k≠0),
設(shè)點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),
則y1+y2= (k≠0),y1y2= (k≠0).
∵k1===,k2=,
∴k1+k2=+
=
== (k≠0).
聯(lián)立
得xM=,yM=,
∴k3==,
∴k1+k2=2k3.
∴存在實(shí)數(shù)λ,使得k1+k2=λk3成立,且λ=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,二面角的大小為90°,, , , .
(1)求證: ;
(2)試確定的值,使得直線與平面所成的角的正弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長(zhǎng)的棱的棱長(zhǎng)為( )
A. 3 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=3,且an+1﹣3an=3n,(n∈N*),數(shù)列{bn}滿足bn=3﹣nan.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè),求滿足不等式的所有正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=sin2ax-sin ax·cos ax- (a>0)的圖象與直線y=b相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為的等差數(shù)列.
(1)求a,b的值;
(2)若x0∈,且x0是y=f(x)的零點(diǎn),試寫(xiě)出函數(shù)y=f(x)在上的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求的最小值;
(Ⅱ)若函數(shù)恰有兩個(gè)不同極值點(diǎn).
①求的取值范圍;
②求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在斜三棱柱中,底面為正三角形,面⊥面, ,
.
(1)求異面直線與所成角的余弦值;
(2)設(shè)為的中點(diǎn),求面與面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com