若函數(shù)f(θ)=
4
3
•sin(θ-5π)•cos(-
π
2
-θ)•cos(-θ)
sin(θ-
2
)•sin(-θ-4π)
,則f(-
π
6
)=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:f(θ)解析式利用誘導(dǎo)公式化簡(jiǎn),約分得到結(jié)果,把θ=-
π
6
代入計(jì)算即可求出值.
解答: 解:f(θ)=
4
3
•(-sinθ)•(-sinθ)•cosθ
cosθ•(-sinθ)
=-4
3
sinθ,
則f(-
π
6
)=-4
3
×(-
1
2
)=2
3
,
故答案為:2
3
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,以及運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別為a,b,c,其中b=6,△ABC的面積為15.其外接圓半徑為5.
(1)求sin2B的值;
(2)求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
ex+1
+a
(Ⅰ)當(dāng)a為何值時(shí),f(x)為奇函數(shù);
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2x+sinxcosx(x∈R)
(1)求f(
8
)的值;
(2)若f(
x0
2
)=
3
4
,x0∈(
π
4
π
2
),求sinx0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log2(1+x)+
2-x
的定義域?yàn)?div id="6161166" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2x-cosx,{an}是公差為
π
8
的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2-a1a5=( 。
A、0
B、
1
16
π2
C、
1
8
π2
D、
13
16
π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=m-1+(m+1)i為純虛數(shù),則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空氣質(zhì)量指數(shù)(簡(jiǎn)稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),其數(shù)值越大說(shuō)明空氣污染越嚴(yán)重,為了及時(shí)了解空氣質(zhì)量狀況,廣東各城市都設(shè)置了AQI實(shí)時(shí)監(jiān)測(cè)站.下表是某網(wǎng)站公布的廣東省內(nèi)21個(gè)城市在2014年12月份某時(shí)刻實(shí)時(shí)監(jiān)測(cè)到的數(shù)據(jù):
城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值城市 AQI數(shù)值
廣州118東莞137中山95江門78云浮76茂名107揭陽(yáng)80
深圳94珠海95湛江75潮州94河源124肇慶48清遠(yuǎn)47
佛山160惠州113汕頭88汕尾74陽(yáng)江112韶關(guān)68梅州84
(1)請(qǐng)根據(jù)上表中的數(shù)據(jù),完成下列表格:
空氣質(zhì)量優(yōu)質(zhì)良好輕度污染中度污染
AQI值范圍[0,50)[50,100)[100,150)[150,200)
城市個(gè)數(shù)
(2)現(xiàn)從空氣質(zhì)量“良好”和“輕度污染”的兩類城市中采用分層抽樣的方式確定6個(gè)城市,省環(huán)保部門再?gòu)闹须S機(jī)選取2個(gè)城市組織專家進(jìn)行調(diào)研,則選取的城市既有空氣質(zhì)量“良好”的又有“輕度污染”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①函數(shù)y=|x+2|的單調(diào)增區(qū)間是[2,+∞);
②設(shè)f(x)是R上的任意函數(shù),則f(x)+f(-x)是偶函數(shù),f(x)-f(-x)是奇函數(shù);
③已知A={x|x2=1},B={x|mx-1=0},若A∩B=B,則實(shí)數(shù)m取值集合是{1,-1};
④函數(shù)f(x)=-x|x|+1對(duì)于定義域R內(nèi)任意x1,x2,當(dāng)x1≠x2時(shí),恒有
f(x1)-f(x2)
x2-x1
>0;
⑤已知f(x)=2x2+1是定義在R上的函數(shù),則存在區(qū)間I,滿足I⊆R,使得對(duì)于I上任意x1,x2,當(dāng)x1≠x2時(shí),恒有f(
x1+x2
2
)
f(x1)+f(x2)
2

其中正確的是
 
.(只填寫相應(yīng)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案