【題目】若函數(shù)f(x)= (a>0,且a≠1)的值域?yàn)椋ī仭蓿?∞),則實(shí)數(shù)a的取值范圍是(
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)

【答案】D
【解析】解:①若a>3,x<0時(shí),0<f(x)<1,x≥0時(shí),f(x)≥4a,此時(shí)不滿足f(x)的值域?yàn)椋ī仭蓿?∞);
②若a=3,顯然不成立;
③若1<a<3,x<0時(shí),0<f(x)<1,x≥0時(shí),f(x)≤4a,不滿足值域(﹣∞,+∞);
④若0<a<1,x<0時(shí),f(x)>1,x≥0時(shí),f(x)≤4a;
要使f(x)的值域?yàn)椋ī仭蓿?∞),則:4a≥1;
;
∴實(shí)數(shù)a的取值范圍是
故選D.
【考點(diǎn)精析】本題主要考查了函數(shù)的值域的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(0, )上的函數(shù)f(x),f′(x)為其導(dǎo)函數(shù),且f(x)<f′(x)tanx恒成立,則(
A. f( )> f(
B. f( )<f( )??
C. f( )>f(
D.f(1)<2f( )?sin1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,F(xiàn)為橢圓E:的右焦點(diǎn),過F作兩條相互垂直的直線AB,CD,與橢圓E分別交于A,B和點(diǎn)C,D.

(1)當(dāng)AB=時(shí),求直線AB的方程;

(2)直線AB交直線x=3于點(diǎn)M,OM與CD交于P,CO與橢圓E交于Q,求證:OM∥DQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax+cosx(a∈R),x∈[﹣ , ].
(1)若函數(shù)f(x)是偶函數(shù),試求a的值;
(2)當(dāng)a>0時(shí),求證:函數(shù)f(x)在(0, )上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大;
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+
(I) 當(dāng)a= 時(shí),判斷f(x)在其定義上的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個(gè)不同的零點(diǎn),記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案