精英家教網 > 高中數學 > 題目詳情

【題目】已知△ABC內角A,B,C的對邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大。
(Ⅱ)已知函數f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

【答案】解:(I)在△ABC中,由題意及正弦定理可得:sinA( sinC+cosC)=sinB+sinC,
sinAsinC+sinAcosC=sin(A+C)+sinC=sinAcosC+cosAsinC+sinC,
整理可得: sinAsinC=cosAsinC+sinC,
又∵C為三角形內角,sinC≠0,
sinA=cosA+1,
∴2( sinA﹣ cosA)=1,即sin(A﹣ )= ,
又∵A﹣ ∈(﹣ , ),
∴A﹣ = ,可得:A=
(Ⅱ)由題意,ω= =2,
∴f(x)=sin(2x+ ),
∴由2kπ+ ≤2x+ ≤2kπ+ ,(k∈Z),可得:kπ+ ≤x≤kπ+ ,(k∈Z),
∴f(x)的減區(qū)間為:[kπ+ ,kπ+ ],(k∈Z)
【解析】(I)由正弦定理,三角形內角和定理,兩角和的正弦函數公式化簡已知等式 sinAsinC=cosAsinC+sinC,又sinC≠0,利用三角函數恒等變換的應用可得sin(A﹣ )= ,由A﹣ ∈(﹣ ),即可解得A的值.(Ⅱ)利用三角函數周期公式可求ω,可得函數解析式為f(x)=sin(2x+ ),由2kπ+ ≤2x+ ≤2kπ+ ,(k∈Z),即可解得f(x)的減區(qū)間.
【考點精析】掌握正弦定理的定義是解答本題的根本,需要知道正弦定理:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C所對的邊分別為a,b,c,且a,b,c成等比數列,若sinB= ,cosB= ,則a+c的值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,設命題:函數上單調遞減,命題:對任意實數,不等式恒成立.

(1)寫出命題的否定,并求非為真時,實數的取值范圍;

(2)如果命題“”為真命題,且“”為假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

中,內角對邊的邊長分別是,已知

的面積等于,求

,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)= (a>0,且a≠1)的值域為(﹣∞,+∞),則實數a的取值范圍是(
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(﹣,0)和B(,0),動點C到A、B兩點的距離之差的絕對值為2.

(1)求點C的軌跡方程;

(2)點C的軌跡與經過點(2,0)且斜率為1的直線交于D、E兩點,求線段DE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為 , , ,女隊每人答對的概率都是 ,設每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數學期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 屆夏季奧林匹克運動會將于2016年8月5日 21日在巴西里約熱內盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數的統(tǒng)計數據(單位:枚).

 

第31屆里約

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

中國

26

38

51

32

28

俄羅斯

19

24

24

27

32

(1)根據表格中兩組數據完成近五屆奧運會兩國代表團獲得的金牌數的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數的平均值及分散程度(不要求計算出具體數值,給出結論即可);

(2)下表是近五屆奧運會中國代表團獲得的金牌數之和 (從第 屆算起,不包括之前已獲得的金牌數)隨時間 (時間代號)變化的數據:

27

28

29

30

31

時間代號(x)

1

2

3

4

5

金牌數之和(y枚)

28

60

111

149

175

作出散點圖如下:

①由圖中可以看出,金牌數之和 與時間代號 之間存在線性相關關系,請求出 關于 的線性回歸方程;

②利用①中的回歸方程,預測2020年第32屆奧林匹克運動會中國代表團獲得的金牌數.

參考數據:,

附:對于一組數據 ,,,其回歸直線的斜率的最小二乘估計為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且Sn=n2+2n;數列{bn}是公比大于1的等比數列,且滿足b1+b4=9,b2b3=8.
(Ⅰ)分別求數列{an},{bn}的通項公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求數列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案