9.若復(fù)數(shù)z滿(mǎn)足z2=-4,則|$\frac{5}{1+z}$|=(  )
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:∵復(fù)數(shù)z滿(mǎn)足z2=-4,∴z=2i.
則|$\frac{5}{1+z}$|=$|\frac{5(1-2i)}{(1+2i)(1-2i)}|$=|1-2i|=$\sqrt{{1}^{2}+(-2)^{2}}$=$\sqrt{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ln(x+1)-ax,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)≥1-ex對(duì)x∈[0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.共享單車(chē)是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車(chē)單車(chē)共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)分成5組,制成如圖所示頻率分布直方圖.
(I)求圖中x的值;
(II)已知各組內(nèi)的男生數(shù)與女生數(shù)的比均為2:l,若在滿(mǎn)意度評(píng)分值為[90,100]的人中隨機(jī)抽取2人進(jìn)行座談,求所抽取的兩人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|1<x<4},B={y|y=2-x,x∈A},集合$C=\left\{{x|y=ln\frac{2-x}{x+1}}\right\}$,則集合B∩C=( 。
A.{x|-1<x<1}B.{x|-1≤x≤1}C.{x|-1<x<2}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)$f(x)=sinωx+sin(ωx-\frac{π}{2})$.
(1)若$ω=\frac{1}{2}$,求f(x)的最大值及相應(yīng)的x的取值范圍;
(2)若$x=\frac{π}{8}$是f(x)的一個(gè)零點(diǎn),且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且S3=1,S4=-3,an+3=2an(n∈N*),則S2017=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足sin2A+sin2B=sin2C-sinAsinB.
(Ⅰ)求角C;
(Ⅱ)若$c=2\sqrt{6}$,△ABC的中線CD=2,求△ABC面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知λ∈R,函數(shù)f(x)=λex-xlnx(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若f(1)=0,證明:曲線y=f(x)沒(méi)有經(jīng)過(guò)點(diǎn)$M({\frac{2}{3},0})$的切線;
(Ⅱ)若函數(shù)f(x)在其定義域上不單調(diào),求λ的取值范圍;
(Ⅲ)是否存在正整數(shù)n,當(dāng)$λ∈[{\frac{n+1}{{n{e^{n+1}}}},+∞})$時(shí),函數(shù)f(x)的圖象在x軸的上方,若存在,求n的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD邊長(zhǎng)為4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面ABCD.
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)點(diǎn)E為線段PD上一點(diǎn),且三棱錐E-BCD的體積為$\frac{8}{3}$,求平面EBC與平面PAB所成銳二面角的余弦值的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案