分析 (1)直接利用余弦定理化簡可得答案.
(2)根據(jù)A的角度,由sin B+sin C=$\sqrt{3}$,消去C,得sin B+sin(π-A-B)=$\sqrt{3}$,求解出B,即可判斷.
解答 解:(1)由bc=b2+c2-a2,
∴cos A=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$.
∵0°<A<180°,
∴A=60°
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°.
由sin B+sin C=$\sqrt{3}$,得sin B+sin(120°-B)=$\sqrt{3}$.
∴sin B+sin 120°cos B-cos 120°sin B=$\sqrt{3}$.
∴$\frac{3}{2}$sin B+$\frac{\sqrt{3}}{2}$cos B=$\sqrt{3}$,即sin(B+30°)=1.
∵0°<B<120°,∴30°<B+30°<150°.
∴B+30°=90°,B=60°.
∴A=B=C=60°.
∴△ABC為等邊三角形.
點(diǎn)評 本題考查了余弦定理的運(yùn)用和三角形內(nèi)角和定理的計算.屬于中檔題基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | [$\frac{1}{9}$,3] | C. | [0,3] | D. | [$\frac{1}{9}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -(x+4)2+1 | B. | -(x-4)2+1 | C. | -(x-4)2-1 | D. | -(x+4)2-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow 0$ | B. | $\overrightarrow{AD}$ | C. | $\overrightarrow{BE}$ | D. | $\overrightarrow{CF}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y-2=0 | B. | x-y+2=0 | C. | x+y=0 | D. | x+y-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | $\frac{7}{3}$ | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com