在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)B在直線(xiàn)上運(yùn)動(dòng),過(guò)點(diǎn)B與l垂直的直線(xiàn)和AB的中垂線(xiàn)相交于點(diǎn)M.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)P是軌跡E上的動(dòng)點(diǎn),點(diǎn)R,N在y軸上,圓C:(x-1)2+y2=1內(nèi)切于△PRN,求△PRN的面積的最小值.
【答案】分析:(1)設(shè)點(diǎn)M的坐標(biāo)為(x,y),由題設(shè)知,|MB|=|MA|.根據(jù)拋物線(xiàn)的定義可知點(diǎn)M的軌跡為拋物線(xiàn),根據(jù)焦點(diǎn)和準(zhǔn)線(xiàn)方程,則可得拋物線(xiàn)方程.
(2)設(shè)P(x,y),R(0,b),N(0,c),且b>c,則直線(xiàn)PR的方程可得,由題設(shè)知,圓心(1,0)到直線(xiàn)PR的距離為1,把x,y代入化簡(jiǎn)整理可得(x-2)b2+2yb-x=0,同理可得(x-2)c2+2yc-x=0,進(jìn)而可知b,c為方程(x-2)x2+2yx-x=0的兩根,根據(jù)求根公式,可求得b-c,進(jìn)而可得△PRN的面積的表達(dá)式,根據(jù)均值不等式可知當(dāng)當(dāng)x=4時(shí)面積最小,進(jìn)而求得點(diǎn)P的坐標(biāo).
解答:解:(Ⅰ)設(shè)點(diǎn)M的坐標(biāo)為(x,y),由題設(shè)知,|MB|=|MA|.
所以動(dòng)點(diǎn)M的軌跡E是以為焦點(diǎn),
為準(zhǔn)線(xiàn)的拋物線(xiàn),其方程為y2=2x;
(Ⅱ)設(shè)P(x,y),R(0,b),N(0,c),且b>c,
故直線(xiàn)PR的方程為(y-b)x-xy+xb=0.
由題設(shè)知,圓心(1,0)到直線(xiàn)PR的距離為1,

注意到x>2,化簡(jiǎn)上式,得(x-2)b2+2yb-x=0,
同理可得(x-2)c2+2yc-x=0.
由上可知,b,c為方程(x-2)x2+2yx-x=0的兩根,
根據(jù)求根公式,可得
故△PRN的面積為
,
等號(hào)當(dāng)且僅當(dāng)x=4時(shí)成立.此時(shí)點(diǎn)P的坐標(biāo)為
綜上所述,當(dāng)點(diǎn)P的坐標(biāo)為時(shí),△PRN的面積取最小值8.
點(diǎn)評(píng):本題主要考查了拋物線(xiàn)的標(biāo)準(zhǔn)方程和直線(xiàn)與拋物線(xiàn)的關(guān)系.直線(xiàn)與圓錐曲線(xiàn)的問(wèn)題常涉及到圓錐曲線(xiàn)的性質(zhì)和直線(xiàn)的基本知識(shí)點(diǎn),如直線(xiàn)被圓錐曲線(xiàn)截得的弦長(zhǎng)、弦中點(diǎn)問(wèn)題,垂直問(wèn)題,對(duì)稱(chēng)問(wèn)題.與圓錐曲線(xiàn)性質(zhì)有關(guān)的量的取值范圍等是近幾年命題的新趨向.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線(xiàn)C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱(chēng)點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫(xiě)出所有正確命題的編號(hào)).
①存在這樣的直線(xiàn),既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線(xiàn)y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線(xiàn)l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線(xiàn)y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線(xiàn)y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線(xiàn)的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案