1.已知△ABC的三邊長成公差為2的等差數(shù)列,且最大角的正弦值為$\frac{\sqrt{3}}{2}$,則這個(gè)三角形最小值的正弦值是$\frac{3\sqrt{3}}{14}$.

分析 設(shè)三角形的三邊分別為a、b、c,且a>b>c>0,設(shè)公差為d=2,求出a=c+4和b=c+2,由邊角關(guān)系和條件求出sinA,求出A=60°或120°,再判斷A的值,利用余弦定理能求出三邊長,由余弦定理和平方關(guān)系求出這個(gè)三角形最小值的正弦值.

解答 解:不妨設(shè)三角形的三邊分別為a、b、c,且a>b>c>0,
設(shè)公差為d=2,三個(gè)角分別為、A、B、C,
則a-b=b-c=2,可得b=c+2,a=c+4,
∴A>B>C,
∵最大角的正弦值為$\frac{\sqrt{3}}{2}$,∴sinA=$\frac{\sqrt{3}}{2}$,
由A∈(0°,180°)得,A=60°或120°,
當(dāng)A=60°時(shí),∵A>B>C,∴A+B+C<180°,不成立;
即A=120°,則cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{(c+2)}^{2}+{c}^{2}-{(c+4)}^{2}}{2c(c+2)}$=$-\frac{1}{2}$,
化簡得$\frac{c-6}{2c}=-\frac{1}{2}$,解得c=3,
∴b=c+2=5,a=c+4=7,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{49+25-9}{2×7×5}$=$\frac{13}{14}$,
又C∈(0°,180°),則sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{3}}{14}$,
∴這個(gè)三角形最小值的正弦值是$\frac{3\sqrt{3}}{14}$,
故答案為:$\frac{3\sqrt{3}}{14}$.

點(diǎn)評 本題考查等差中項(xiàng)的性質(zhì),余弦定理,以及三角形邊角關(guān)系的應(yīng)用,考查了方程與轉(zhuǎn)化思想,運(yùn)算求解能力,推理論證能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=$\frac{1}{2}$CP=2,D是CP的中點(diǎn),將△PAD沿AD折起,使得PD⊥面ABCD.

(1)求證:平面PAD⊥平面PCD;
(2)若E是PC的中點(diǎn),求三棱錐D-PEB的體積.
(3)若E在CP上且二面角E-BD-C所成的角為45°,求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若x軸是曲線f(x)=lnx-kx+3的一條切線,則k=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x-1.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間,并作出簡圖
(Ⅱ)求函數(shù)f(x)在區(qū)間[-3,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=2x-2-x,a=(${\frac{7}{9}}$)${\;}^{\frac{1}{2}}}$,b=(${\frac{9}{7}}$)${\;}^{\frac{1}{2}}}$,c=log2$\frac{7}{9}$,則f(a),f(b),f(c)的大小順序?yàn)椋ā 。?table class="qanwser">A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(n)=24+27+210+…+23n+10(n∈N),則f(n)=$\frac{16({8}^{n+3}-1)}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.log0.72,log0.70.8,0.9-2的大小順序是( 。
A.log0.72<log0.70.8<0.9-2B.log0.70.8<log0.72<0.9-2
C.0.9-2<log0.72<log0.70.8D.log0.72<0.9-2<log0.70.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知條件p:|x+1|>2,條件q:x2-5x+6<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)若f(α)=$\frac{5}{3}$,求cos(α-$\frac{π}{6}$)的值.

查看答案和解析>>

同步練習(xí)冊答案