【題目】在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題。甲能正確完成其中的4道題,乙能正確完成每道題的概率為,且每道題完成與否互不影響。

⑴記所抽取的3道題中,甲答對的題數(shù)為X,則X的分布列為____________;

⑵記乙能答對的題數(shù)為Y,則Y的期望為_________

【答案】

X

1

2

3

P

0.2

0.6

0.2

【解析】(1)主考官要求應(yīng)聘者從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題;

甲能正確完成其中的4題,所抽取的3道題中,甲答對的題數(shù)為X,

由題意得X的可能取值為1,2,3,

∴X的分布列為:

X

1

2

3

P

0.2

0.6

0.2

(2)主考官要求應(yīng)聘者從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題,乙能正確完成每道題的概率為 ,且每道題完成與否互不影響,

由題意Y的可能取值為0,1,2,3,且 ,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學高三年級有學生500人,其中男生300人,女生200人。為了研究學生的數(shù)學成績是否與性別有關(guān),采用分層抽樣的方法,從中抽取了100名學生,統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按照性別分為男、女兩組,再將兩組的分數(shù)分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

(I)從樣本分數(shù)小于110分的學生中隨機抽取2人,求兩人恰為一男一女的概率;

(II)若規(guī)定分數(shù)不小于130分的學生為“數(shù)學尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學尖子生與性別有關(guān)”?

附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有五輛汽車,其中兩輛汽車的車牌尾號均為1. 兩輛汽車的車牌尾號均為2, 車的車牌尾號為6,已知在非限行日,每輛車可能出車或不出車, 三輛汽車每天出車的概率均為 兩輛汽車每天出車的概率均為,且五輛汽車是否出車相互獨立,該公司所在地區(qū)汽車限行規(guī)定如下:

車牌尾號

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

(1)求該公司在星期一至少有2輛汽車出國的概率;

(2)設(shè)表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線的焦點, 為拋物線上不同的兩點, 分別是拋物線在點、點處的切線, 的交點.

(1)當直線經(jīng)過焦點時,求證:點在定直線上;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為各局比賽結(jié)果相互獨立.

(1)求甲在4局以內(nèi)(4)贏得比賽的概率;

(2)X為比賽決出勝負時的總局數(shù),求X的分布列和均值(數(shù)學期望)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,,其中(e是自然常數(shù)),

(1)當時, 求的單調(diào)區(qū)間、極值;

(2)是否存在,使的最小值是3,若存在求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,且上有三個零點,1是其中一個零點.

(1)求的取值范圍;

(2)若直線在曲線的上方部分所對應(yīng)的的集合為,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三(1)班全體女生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞但可見部分如圖所示據(jù)此解答如下問題

(1)求高三(1)班全體女生的人數(shù)

(2)求分數(shù)在[80,90)之間的女生人數(shù)并計算頻率分布直方圖中[80,90)之間的矩形的高

(3)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析女生失分情況在抽取的試卷中,求至少有一份分數(shù)在[90,100]之間的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.

如圖,在陽馬中,側(cè)棱底面,且, 中點,點上,且平面,連接

(Ⅰ)證明: 平面;

(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;

(Ⅲ)已知 ,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案