已知邊長為2的正三角形ABC的重心為G,其中M,N分別在AB,AC邊上,且
AM
=2
MB
,2
AN
=
NC
,則|
GM
|=
 
|
GN
|.
考點:平面向量的基本定理及其意義
專題:平面向量及應用
分析:如圖所示,設D是邊BC的中點,由邊長為2的正三角形ABC的重心為G,可得
AG
=2
GD
,又
AM
=2
MB
,可得
MG
=
2
3
BD
=
1
3
BC
.|
MG
|=
1
3
|
BC
|
=
2
3
.同理可得
GN
=
1
3
BA
,即可得出.
解答: 解:如圖所示,
設D是邊BC的中點,
∵邊長為2的正三角形ABC的重心為G,
AG
=2
GD
,
AM
=2
MB
,
MG
=
2
3
BD
=
1
3
BC

|
MG
|=
1
3
|
BC
|
=
2
3

同理可得
GN
=
1
3
BA
,|
GN
|=
2
3

|
GM
|=|
GN
|

故答案為:1.
點評:本題考查了向量的共線定理、等邊三角形的性質(zhì)、三角形的重心性質(zhì),考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=3x-3-x-2x,則滿足(x-2)f(log 
1
2
x)<0的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=cosxcos(x-θ)-
1
2
cosθ,0<θ<π,f(
π
3
)的值最大,則2f(
3x
2
)在x∈[0,
π
3
]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,AC與BD交于點O,則異面直線OC1與AD1所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+bx+c(b,c∈R).
(1)若f(-1)=f(2),且不等式x≤f(x)≤2|x-1|+1對x∈[0,2]恒成立,求函數(shù)f(x)的解析式;
(2)若c<0,且函數(shù)f(x)在[-1,1]上有兩個零點,求2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
),x∈[0,π]
(1)求函數(shù)f(x)的最小值及取最小值時相應的x的值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
3
sinxcosx+3sin2x-
3
2

(1)求f(x)的最小正周期及f(
π
12
);
(2)求y=f(x)的單調(diào)增區(qū)間;
(3)當x∈[
π
3
6
]時,求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四面體OABC各棱長為1,D是棱OA的中點,則異面直線BD與AC所成角的余弦值( 。
A、
3
3
B、
1
4
C、
3
6
D、
2
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
,
e2
是兩個不共線的向量,向量
PA
=
e1
+sina
e2
(-
π
2
<a<
π
2
),
PB
=2
e1
-
e2
,
PC
=3
e1
-
5
2
e2
,若A,B,C三點共線,且函數(shù)f(x-a)=4cos(x-a)cos(x-2a),則f(x)在[-
π
4
,
π
6
]上的值域為(  )
A、[-2,
3
+2]
B、[1-
3
,2]
C、[-2
3
,
3
+2]
D、[
3
-1,
3
+2]

查看答案和解析>>

同步練習冊答案