【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2= .
【答案】
(1)解:由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而2×2列聯(lián)表如下:
非體育迷 | 體育迷 | 合計(jì) | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計(jì) | 75 | 25 | 100 |
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得K2= = ≈3.030.
因?yàn)?.030<3.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān).
(2)解:由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率 .
由題意知X~B(3, ),從而X的分布列為
X | 0 | 1 | 2 | 3 |
P |
E(X)=np=3× = .D(X)=np(1﹣p)=3× × =
【解析】(1)根據(jù)所給的頻率分布直方圖得出數(shù)據(jù)列出列聯(lián)表,再代入公式計(jì)算得出K2 , 與3.841比較即可得出結(jié)論;(2)由題意,用頻率代替概率可得出從觀眾中抽取到一名“體育迷”的概率是 ,由于X∽B(3, ),從而給出分布列,再由公式計(jì)算出期望與方差即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣3,3x4﹣2,3x5﹣2的平均數(shù)和方差分別為( )
A.2,
B.4,3
C.4,
D.2,1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)對任意的x∈R都有f′(x)>f(x)恒成立,則( )
A.3f(ln2)>2f(ln3)
B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)
D.3f(ln2)與2f(ln3)的大小不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x3﹣1)2+1,下列結(jié)論中正確的是( )
A.x=1是函數(shù)f(x)的極小值點(diǎn),x=0是函數(shù)f(x)的極大值點(diǎn)
B.x=1及x=0均是函數(shù)f(x)的極大值點(diǎn)
C.x=1是函數(shù)f(x)的極大值點(diǎn),x=0是函數(shù)f(x)的極小值點(diǎn)
D.x=1是函數(shù)f(x)的極小值點(diǎn),函數(shù)f(x)無極大值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于, 兩點(diǎn),且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線,曲線.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標(biāo)方程;
(2)與交于不同的四點(diǎn),這四點(diǎn)在上排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)fn(x)=xn+bx+c(n∈N* , b,c∈R)
(Ⅰ)設(shè)n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間( )內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè)n=2,若對任意x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com