4.(2$\sqrt{x}$-$\frac{1}{\root{4}{x}}$)6的展開式的常數(shù)項(xiàng)是60(用數(shù)字作答)

分析 利用通項(xiàng)公式即可得出.

解答 解:通項(xiàng)公式Tr+1=${∁}_{6}^{r}(2\sqrt{x})^{6-r}(-\frac{1}{\root{4}{x}})^{r}$=(-1)r26-r${∁}_{6}^{r}$${x}^{3-\frac{3r}{4}}$,
令3-$\frac{3r}{4}$=0,解得r=4.
∴常數(shù)項(xiàng)是${2}^{2}{∁}_{6}^{4}$=60.
故答案為:60.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的性質(zhì)及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.集合{(x,y)|x+y=2,x∈N,y∈N},用列舉法表示為{(0,2),(1,1),(2,0)}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知如圖為f(x)=msin(ωx+φ)+n,m>0,ω>0的圖象.
(1)求f(x)的解析式;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,滿足$a=\sqrt{3},f(A)=1+\sqrt{3}$,求△ABC的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,六棱錐P-ABCDEF的底面是邊長(zhǎng)為1的正六邊形,PA⊥底面ABCDEF.
(1)求證:平面PAC⊥平面PCD;
(2)若直線PC與平面PDE所成角的正弦值為$\frac{1}{4}$,求六棱錐P-ABCDEF高的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,BC:AB=2:$\sqrt{3}$,∠B=30°,則∠C=( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,AB是圓O的直徑,P是線段AB延長(zhǎng)線上一點(diǎn),割線PCD交圓O于點(diǎn)C,D,過點(diǎn)P作AP的垂線,交線段AC的延長(zhǎng)線于點(diǎn)E,交線段AD的延長(zhǎng)線于點(diǎn)F,且PE•PF=5,PB=$\frac{1}{2}$OA.
(1)求證:C,D,E,F(xiàn)四點(diǎn)共圓;
(2)求圓O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知α,β,γ是三個(gè)不同的平面,l,m是兩條不同的直線,則下列命題一定正確的是(  )
A.若l丄α,l∥β則 α∥β
B.若γ丄α,γ丄β,則 α∥β
C.若l∥m且 l?α,m?β,l∥β,m∥α,則 α∥β
D.若l,m 異面,且 l?α,m?β,l∥β,m∥α,則 α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為防止某種疾病,今研制一種新的預(yù)防藥,任選取100只小白鼠作試驗(yàn),得到如下的列聯(lián)表:
患病未患病總計(jì)
服用藥154055
沒服用藥202545
總計(jì)3565100
K2的觀測(cè)值為3.2079,則在犯錯(cuò)誤的概率不超過( 。┑那疤嵯抡J(rèn)為“藥物對(duì)防止某種疾病有效”.
參考數(shù)據(jù):
P( K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.0.025B.0.05C.0.010D.0.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow a}|=2,|{\overrightarrow b}$|=2,|$\overrightarrow$|=1,且($\overrightarrow a+3\overrightarrow b})⊥({2\overrightarrow a-\overrightarrow b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案