A. | $\frac{4π}{3}$ | B. | $\frac{{8\sqrt{2}π}}{3}$ | C. | $\frac{{12\sqrt{3}π}}{3}$ | D. | $\frac{32π}{3}$ |
分析 利用等體積轉(zhuǎn)換,求出PC,PA⊥AC,PB⊥BC,可得PC的中點為球心,球的半徑,即可求出三棱錐P-ABC外接球的體積.
解答 解:由題意,設(shè)PC=2x,則
∵PA⊥AC,∠APC=$\frac{π}{4}$,
∴△APC為等腰直角三角形,
∴PC邊上的高為x,
∵平面PAC⊥平面PBC,
∴A到平面PBC的距離為x,
∵∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,
∴PB=x,BC=$\sqrt{3}$x,
∴S△PBC=$\frac{1}{2}x•\sqrt{3}x$=$\frac{\sqrt{3}}{2}{x}^{2}$,
∴VP-ABC=VA-PBC=$\frac{1}{3}×\frac{\sqrt{3}}{2}{x}^{2}×x$=$\frac{{4\sqrt{3}}}{3}$,
∴x=2,
∵PA⊥AC,PB⊥BC,
∴PC的中點為球心,球的半徑為2,
∴三棱錐P-ABC外接球的體積為$\frac{4}{3}π•{2}^{3}$=$\frac{32}{3}π$.
故選:D.
點評 本題考查三棱錐P-ABC外接球的體積,考查學(xué)生的計算能力,正確確定球心與球的半徑是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12π | B. | 16π | C. | 18π | D. | 24π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}π}{12}$m3 | B. | $\frac{\sqrt{3}π}{6}$m3 | C. | $\frac{\sqrt{3}}{3}$m3 | D. | $\frac{\sqrt{3}}{6}$m3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{16}{3}$ | C. | 8 | D. | $\frac{32}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 2 | 3 | 2 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com