已知⊙C的圓心C(2,2),過原點(diǎn)O的直線y=kx與圓C相交于P,Q兩點(diǎn),且
OP
OQ
=6,則圓的方程為
 
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:設(shè)圓的半徑為r,利用直線和圓的位置關(guān)系即可得到結(jié)論.
解答: 解:設(shè)半徑為r,則圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=r2,
將y=kx代入圓的方程整理得(1+k2)x2-(4+4k)x+8-r2=0,
設(shè)P(x1,kx1),Q(x2,kx2),
OP
OQ
=6,
∴x1x2+k2x1x2=6,
即(1+k2)x1x2=6,
∵x1x2=
8-r2
1+k2
,∴(1+k2)•
8-r2
1+k2
=8-r2=6,
解得r2=2,
故圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=2,
故答案為:圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=2
點(diǎn)評(píng):本題主要考查圓的方程,利用直線和圓的位置關(guān)系,結(jié)合根與系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ln(x2+1),g(x)=(
1
3
)x-m
,若?x1∈[0,3],?x2∈[1,2]使得f(x1)≥g(x2)則實(shí)數(shù)m的取值范圍是( 。
A、[
1
9
,+∞)
B、(-∞,
1
9
]
C、[
1
3
,+∞)
D、(-∞,-
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在正方體ABCD-A′B′C′D′中,E是棱BB′中點(diǎn),G是DD′中點(diǎn),F(xiàn)是BC上一點(diǎn)且FB=
1
4
BC,則GB與EF所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把可表示為兩個(gè)連續(xù)正偶數(shù)的平方差的正整數(shù)稱為“理想數(shù)”,則在1~2012(包括2012)這2012個(gè)數(shù)中,共有“理想數(shù)”的個(gè)數(shù)是( 。
A、502B、503
C、251D、252

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β∈[-
π
2
π
2
]
,且αsinα-βsinβ>0,則下列結(jié)論正確的是( 。
A、α3>β3
B、α+β>0
C、|α|<|β|
D、|α|>|β|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
4
)=
1
2
,α∈(
π
2
,π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(4,-1),B(8,2)和直線l:x-y-1=0,動(dòng)點(diǎn)P(x,y)在直線l上,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
的方向是東南方向,且|
AB
|=4,則向量-2
AB
的方向是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(sinα+cosα)=sinαcosα,若f(t)=
1
2
,則實(shí)數(shù)t的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案