分析 因?yàn)?{C}_{n}^{0}+{C}_{n}^{1}x+{C}_{n}^{2}{x}^{2}+…{C}_{n}^{n}{x}^{n}=(1+x)^{n}$,兩邊進(jìn)行0到$\frac{1}{2}$的定積分,然后求定積分值即可.
解答 解:因?yàn)?{C}_{n}^{0}+{C}_{n}^{1}x+{C}_{n}^{2}{x}^{2}+…{C}_{n}^{n}{x}^{n}=(1+x)^{n}$,
兩邊對(duì)x定積分,即${∫}_{0}^{\frac{1}{2}}{C}_{n}^{0}dx+{∫}_{0}^{\frac{1}{2}}{C}_{n}^{1}xdx$+…+${∫}_{0}^{\frac{1}{2}}{C}_{n}^{n}{x}^{n}dx$=${∫}_{0}^{\frac{1}{2}}{(1+x)}^{n}dx$,
所以${C}_{n}^{0}×\frac{1}{2}$+$\frac{1}{2}$${C}_{n}^{1}$×($\frac{1}{2}$)2+$\frac{1}{3}$${C}_{n}^{2}$×($\frac{1}{2}$)3+…+$\frac{1}{n+1}$${C}_{n}^{n}$×($\frac{1}{2}$)n+1=$\frac{1}{n+1}(1+x)^{n+1}{|}_{0}^{\frac{1}{2}}$=$\frac{1}{n+1}[(\frac{3}{2})^{n+1}-1]$.
故答案為:$\frac{1}{n+1}[(\frac{3}{2})^{n+1}-1]$.
點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的靈活運(yùn)用;關(guān)鍵是發(fā)現(xiàn)已知式子是${C}_{n}^{0}+{C}_{n}^{1}x+{C}_{n}^{2}{x}^{2}+…{C}_{n}^{n}{x}^{n}=(1+x)^{n}$在0到$\frac{1}{2}$的定積分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q | B. | p∧¬q | C. | ¬p∧q | D. | p∨¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 335 | B. | 336 | C. | 337 | D. | 338 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∈N | B. | ∁RM⊆N | C. | M∈∁RN | D. | ∁RN⊆∁RM |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com