16.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{2x+1,x-2y+5}的最小值為( 。
A.1B.2C.3D.4

分析 作出$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$的平面區(qū)域,由新定義可得max{2x+1,x-2y+5},畫出不等式組表示的可行域,運(yùn)用平移法,可得最小值.

解答 解:實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,
作出平面區(qū)域,如圖:
當(dāng)2x+1≥x-2y+5,即x+2y-4≥0時(shí),
max{2x+1,x-2y+5}=2x+1,
作出x+2y-4≥0,可得無(wú)可行域,
故不成立;
當(dāng)2x+1<x-2y+5,即x+2y-4<0時(shí),
max{2x+1,x-2y+5}=x-2y+5.
作出x+2y-4<0,可得可行域?yàn)殛幱安糠郑?br />由直線x-2y=0平移可得,經(jīng)過點(diǎn)(-1,1)時(shí),
x-2y+5取得最小值2.
故選:B.

點(diǎn)評(píng) 本題考查了分段函數(shù),分類討論的思想應(yīng)用,簡(jiǎn)單線性規(guī)劃的運(yùn)用,注意運(yùn)用數(shù)形結(jié)合的思想方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.為了了解高三學(xué)生的數(shù)學(xué)成績(jī),抽取了某班60名學(xué)生,將所得數(shù)據(jù)整理后,畫出如圖所示的頻率分布直方圖,已知從左到右各長(zhǎng)方形高的比為2:3:5:6:3:1,則該班學(xué)生數(shù)學(xué)成績(jī)?cè)赱100,120]之間的學(xué)生人數(shù)是(  )
A.32B.24C.18D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC,各棱長(zhǎng)均為2,D、E、F分別是棱AC,AA1,CC1的中點(diǎn)
(Ⅰ)求證:B1F∥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x≥1}\\{f(2-x),x<1}\end{array}\right.$,則不等式f(x)>2的解集是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,1≤x≤3}\\{x-3,x>3}\\{\;}\end{array}\right.$,若在其定義域內(nèi)存在n(n≥2,n∈N*)個(gè)不同的數(shù)x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,則n的最大值是3;若n=2,則$\frac{f({x}_{n})}{{x}_{n}}$的最大值等于4-$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.B.C.12πD.20π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=AA1=4,AC⊥BC,D是線段AB上一點(diǎn).
(1)設(shè)$\overrightarrow{AB}$=5$\overline{AD}$,求異面直線AC1與CD所成角的余弦值;
(2)若AC1∥平面B1CD,求二面角D-CB1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lg(3-4x+x2)的定義域?yàn)镸.
(1)求f(x)的單調(diào)區(qū)間及值域;
(2)當(dāng)x∈M時(shí),關(guān)于x的方程1og2(3-x)-1og2(1+x)=b(b∈R)有實(shí)數(shù)根,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,則z=3x-y的最大值為( 。
A.-6B.10C.12D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案