分析 (1)建立空間坐標(biāo)系,根據(jù)$\overrightarrow{AB}$=5$\overline{AD}$,求出D的坐標(biāo),結(jié)合異面直線所成角的定義進(jìn)行求解,
(2)根據(jù)AC1∥平面B1CD,利用平面向量共面的基本定理求出D的坐標(biāo),求出平面的法向量,利用向量法進(jìn)行求解即可.
解答 解:(1)∵AC⊥BC,
∴建立以C為坐標(biāo)原點(diǎn),CA,CB,CC1分別為x,y,z軸的空間直角坐標(biāo)系如圖:
∵AC=3,BC=AA1=4,
∴C(0,0,0),A(3,0,0),B(0,4,0),C1(0,0,4),B1(0,4,4),
則$\overrightarrow{AB}$=(-3,4,0),設(shè)D(x,y,0),
∵$\overrightarrow{AB}$=5$\overline{AD}$,
∴(-3,4,0)=5(x-3,y,0),
則$\left\{\begin{array}{l}{-3=5x-15}\\{4=5y}\end{array}\right.$則$\left\{\begin{array}{l}{x=\frac{12}{5}}\\{y=\frac{4}{5}}\end{array}\right.$,即D($\frac{12}{5}$,$\frac{4}{5}$,0),
則$\overrightarrow{CD}$=($\frac{12}{5}$,$\frac{4}{5}$,0),$\overrightarrow{A{C}_{1}}$=(-3,0,4),
則cos<$\overrightarrow{CD}$,$\overrightarrow{A{C}_{1}}$>=$\frac{\overrightarrow{CD}•\overrightarrow{A{C}_{1}}}{|\overrightarrow{C{D}_{\;}}||\overrightarrow{A{C}_{1}}|}$=$\frac{-3×\frac{12}{5}}{\sqrt{{3}^{2}+{4}^{2}}•\sqrt{(\frac{12}{5})^{2}+(\frac{4}{5})^{2}}}$=-$\frac{9\sqrt{10}}{250}$,
則異面直線AC1與CD所成角的余弦值是$\frac{9\sqrt{10}}{250}$.
(2)D(x,y,0),則$\overrightarrow{C{B}_{1}}$=(0,4,4),$\overrightarrow{CD}$=(x,y,0),$\overrightarrow{A{C}_{1}}$=(-3,0,4)
∵AC1∥平面B1CD,
設(shè)$\overline{AD}$=t$\overrightarrow{AB}$=(-3t,4t,0),
則$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overline{AD}$=(3-3t,4t,0)
∴存在兩個(gè)實(shí)數(shù)m,n有$\overrightarrow{A{C}_{1}}$=m$\overrightarrow{C{B}_{1}}$+n$\overrightarrow{CD}$
即(-3,0,4)=m(0,4,4,)+n(3-3t,4t,0),
即$\left\{\begin{array}{l}{-3=3n-3nt}\\{0=4m+4nt}\\{4=4m}\end{array}\right.$,則m=1,n=-2,t=$\frac{1}{2}$,
即$\overrightarrow{CD}$=(3-3t,4t,0)=($\frac{3}{2}$,2,0),
即D是AB的中點(diǎn),
設(shè)平面DCB1的法向量為$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CD}=\frac{3}{2}x+2y=0}\\{\overrightarrow{m}•\overrightarrow{C{B}_{1}}=4y+4z=0}\end{array}\right.$,
令y=1,則z=-1,x=-$\frac{4}{3}$,即$\overrightarrow{m}$=(-$\frac{4}{3}$,1,-1),
平面CB1B的一個(gè)法向量為$\overrightarrow{n}$=(1,0,0),
則cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-\frac{4}{3}}{\sqrt{\frac{16}{9}+1+1}}$=-$\frac{2\sqrt{34}}{17}$,
∵二面角D-CB1-B是銳二面角,
∴二面角D-CB1-B的余弦值是$\frac{2\sqrt{34}}{17}$.
點(diǎn)評(píng) 本題主要考查異面直線所成角以及空間二面角的求解,建立空間坐標(biāo)系,求出平面的法向量,利用向量法是解決二面角常用的方法.難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f′(3)<f′(4)<f(4)-f(3)<0 | B. | f′(3)<f(4)-f(3)<f′(4)<0 | C. | f′(4)<f(4)-f(3)<f′(3)<0 | D. | f(4)-f(3)<f′(4)<f′(3)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9π}{2}$ | B. | $\frac{27π}{8}$ | C. | 36π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com