若圓(x-a)2+(y-b)2=c2和圓(x-b)2+(y-a)2=c2相切,則( 。
A、(a-b)2=c2
B、(a-b)2=2c2
C、(a+b)2=c2
D、(a+b)2=2c2
考點:圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:求出圓心距與半徑和相等,即可得到結(jié)果
解答: 解:圓(x-a)2+(y-b)2=c2的圓心(a,b)半徑為|c|,圓(x-b)2+(y-a)2=c2,的圓心(b,a),半徑為|c|,
因為圓(x-a)2+(y-b)2=c2和圓(x-b)2+(y-a)2=c2相切,
所以
(a-b)2+(b-a)2
=2|c|,
即(a-b)2=2c2
故選:B.
點評:本題考查圓與圓的位置關(guān)系,圓的標準方程的應(yīng)用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知空間中三點A(x1,y1,z1)、B(x2,y2,z2)、C(x3,y3,z3,),則A、B、C三點共線的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列拋物線的焦點坐標和準線方程:
(1)2y2=-
3
x;
(2)y2-8
2
x=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x2和y=x3
(1)它們的奇偶性是怎樣的?
(2)它們的圖象各有怎樣的對稱性?
(3)它們在(0,+∞)上各有怎樣的單調(diào)性?在(-∞,0)上呢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列四個命題中,其中正確命題的是( 。
A、有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱
B、有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐
C、有兩個面互相平行,其余各面都是梯形的多面體是棱臺
D、用平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題是( 。
A、“a≤b”是“a+c≤b+c”的充分不必要條件
B、“已知x,y∈R,若x+y≠6,則x≠2或y≠4”是真命題
C、二進制數(shù)1010(2) 可表示為三進制數(shù)110(3)
D、“平面向量
a
b
的夾角是鈍角”的充要條件是“
a
b
<0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ex-a
ex+1
是奇函數(shù),若關(guān)于x的方程f(x)=lgt有解,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(2,0),圓C:x2+y2-8y=0,過P的動直線l與圓C交于A,B兩點,線段AB的中點為M,當|OP|=|OM|時(O為坐標原點),求直線l的方程及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程
1-x2
=kx+2有兩個不同的實數(shù)根,則實數(shù)k的取值范圍為
 

查看答案和解析>>

同步練習冊答案