8.若x+x-1=5,則x2-x-2=±5$\sqrt{21}$.

分析 對x+x-1=5平方得x2+x-2=23,計算(x-x-12得出(x-x-1),使用平方差公式計算x2-x-2

解答 解:∵x+x-1=5,∴(x+x-12=25,即x2+x-2+2=25,∴x2+x-2=23.
∵(x-x-12=x2+x-2-2=23-2=21,∴x-x-1=$±\sqrt{21}$.
∴x2-x-2=(x+x-1)(x-x-1)=±5$\sqrt{21}$.
故答案為±5$\sqrt{21}$.

點評 本題考查了指數(shù)冪運算,發(fā)現(xiàn)指數(shù)間的關(guān)系是解題關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若x是log24和1og28的等差中項,則x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c.已知cosA=$\frac{1}{4}$,a=4,b+c=6,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在數(shù)列{an}中,已知a1=2,對于任意的p、q∈Z+,都有ap+aq=ap+q成立.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足an2bn=1,設(shè)Sn為數(shù)列{bn}的前n項之和.求證:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.由四個全等的等邊三角形的封面幾何體稱為正四面體,如圖,正四面體ABCD中,E、F分別是棱BC、AD的中點,CF與DE是一對異面直線,在圖形中適當(dāng)?shù)倪x取一點作出異面直線CF、DE的平行線,找出異面直線CF與DE成的角.(注:至少用四種方法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,AB=3,AC=2,BC=$\sqrt{10}$,則$\overrightarrow{AB}•\overrightarrow{CA}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a>1,b>2,且ab=2a+b,則a+b的最小值為( 。
A.2$\sqrt{2}$B.2$\sqrt{2}$+1C.2$\sqrt{2}$+2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l:$y=x+\sqrt{6}$,圓O:x2+y2=5,橢圓E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{3}$,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點$P({x_0},{y_0})({x_0}≠±\sqrt{2},{y_0}≠±\sqrt{3})$作兩條直線與橢圓E分別只有唯一一個公共點,求證:這兩直線斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,平行六面體ABCD-A1B1C1D1中,AC與BD交于點M,設(shè)$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{A{A_1}}$=$\overrightarrow c$,則$\overrightarrow{{B_1}M}$=(  )
A.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$

查看答案和解析>>

同步練習(xí)冊答案